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Abstract 

With rapid population growth and development, traffic congestion has become a prob-

lem over the past decades, especially in the big cities. Traffic speed is one of the indica-

tors to determine traffic conditions. With the current development of sensors and other 

data collection devices and the advancement of the Internet of Things (IoT), more traf-

fic speed data has become available. At the same time, there is growing interest in Intel-

ligent Transportation Systems (ITS) that may help solve the current traffic problem. 

Traffic speed prediction is one of the components in ITS that has become one of the 

most developed research areas. However, most of the studies used Deep Learning (DL) 

algorithms which require complex data preprocessing and extensive computational 

power. Moreover, many studies did not consider the spatial features and only predicted 

the speed in a road corridor or the segment where a sensor is available. Therefore, this 

study is trying to compare the Machine Learning (ML) performance to an earlier study 

by considering the spatial features and finding the most effective way to use these mod-

els for network-wide prediction.  

Floating Car Data (FCD) and OpenStreetMap (OSM) data were used and prepro-

cessed by following the approach of the previous study. The data were trained and test-

ed using several ML models. The result was evaluated by comparing it to the initial 

study's results. Moreover, several scenarios were tested to determine the most efficient 

way to predict the traffic speed on a network-wide scale. The Gradient Boosting (GB) 

algorithm is the best model in this study, with consistent performance in all scenarios 

and promising results.  
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1 Introduction  

These days, population growth has been increasing fast and impacts our lives in many 

ways. The number of vehicles, especially in large cities, is also increasing along with 

the change. This rapid growth causes congestion problem that leads to health issues be-

cause of the increasing amount of CO2 emissions in the air and noise pollution [1]. It 

also affects the economy since traffic congestion could cost much and decelerate devel-

opment [1], [2]. It increases travel time, causing slow circulation of goods and people, 

which leads to inefficient work [2]. On top of that, there are several other effects of traf-

fic congestion, namely, increasing traffic accidents, fuel consumption, and higher oper-

ating cost of vehicles [1].  

Therefore, traffic congestion is not an easy problem to be solved, many efforts have 

been made to tackle the problem, yet it is still an issue today. One solution currently de-

veloping in this digitalization era is the Intelligent Transportation System (ITS). Sup-

ported by the amount of data generated and circulated in the cities and the growth of the 

IoT in recent years, ITS aims to provide a safer, coordinated, and “smarter” transporta-

tion system [3]–[5]. Hence, it will achieve traffic efficiency by minimizing traffic prob-

lems that are mainly traffic congestion [4], [6]. Moreover, it can provide benefits such 

as offering a range of affordable and convenient transport options and keeping track of 

incidents and congestion for road users and travelers [4].  

One component that can support the development of ITS is traffic prediction. Ac-

cording to [7], the traffic prediction’s final target is to make actual transportation intel-

ligent. Therefore, building a unified ITS that can manage different data sources and ef-

ficiently handle traffic data analysis and mining processes in one environment is neces-

sary. However, traffic prediction itself is not a simple problem. It consists of a broad 

spectrum that we can categorize into some concepts based on the perspective group of 

people, such as traffic status (crowds), traffic flow (governments), and travel demand 

prediction (related companies). Furthermore, from that variety of concepts, traffic prob-

lems can generally be divided into traffic classification, generation, and forecasting [7].  
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Moreover, according to [7], traffic prediction has some challenges. One of the chal-

lenges is improving the current traffic prediction performance in addressing the joint 

traffic prediction problem because of the possibility that traffic prediction problems will 

consider a different type of traffic data than any other complex factor and features. Ad-

ditionally, according to [4], there are some gaps in traffic prediction research. Some 

lack the road types as input for traffic prediction, some do not consider spatial and tem-

poral relationships, and some neural network techniques can only capture spatial or 

temporal data. Also, in the scale of prediction area, the network-wide traffic speed has 

become an important and challenging topic according to [8] 

1.1 Objectives 

In order to address the mentioned challenges, the research aims to compare the predic-

tion performance from [9] using the approach in [3]. The model will also incorporate 

some spatial elements, such as road length and bus stops in the analyzed segment, to 

determine how it will affect performance. In addition, we will investigate the practical 

scenario for which to perform network-wide prediction to gain information sufficient 

for route planning analysis. 

1.2 Research Questions and Boundaries 

From the objectives above, the emerging research questions are:  

a. How good is the prediction model's performance when the features in [3] are 

used to create a prediction model compared to the model in [9]? 

b. How do spatial elements such as bus stops and road length affect traffic condi-

tions? 

c. What is the efficient scenario to predict network-wide traffic speed? 

There are some research boundaries to limit the work, which are,  

a. The study will be limited to Thessaloniki, Greece.  

b. Only several traditional Machine Learning (ML) models will be used in this 

study. 

c. The result for Network-Wide prediction will be in the form of scenario sugges-

tions, not a prediction result 
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1.3 Contribution and Thesis Structure  

In this section, the contributions from this study will be presented, followed by the 

structure of the thesis.  

The Difference with Previous Research 

Traffic prediction problems can be handled using either ML or DL algorithms. Some 

studies used DL models such as DL based multitask learning (MTL), CNN, RNN, and 

LSTM [8], [10], [11]. Indeed, DL algorithms may give more accurate results compared 

to ML algorithms. However, DL algorithms might be more time-consuming and compu-

tational power hungry when compared to ML algorithms. Thus in this study, traditional 

ML algorithms are used and compared to find a suitable model for the given data.  

Classification has been used to deal with traffic prediction problems in several stud-

ies [3], [12], [13]. In [12], a prediction model based on weather conditions was devel-

oped and continued in [13] to study the impact of atypical conditions—in this case, 

COVID-19, on the result of the traffic prediction model. Those studies concluded that 

weather data could support the decision-making for traffic prediction while assessing 

the impact of a long, atypical condition. Moreover, some features can help the model, 

such as different intervals during the day—e.g., morning, afternoon, and evening. How-

ever, something that must be noted from [12] that the prediction model's result was 

based on weather data, which was also predicted. Thus, an accurate weather prediction 

model is expected, or bias to the traffic prediction will be introduced. 

In a slightly similar fashion, the primary research objectives in [3] aimed to develop 

a framework with ML techniques—i.e., Classification, to tackle traffic congestion. With 

the data obtained from an API that gives the information about the congestion status in 

each road segment, a prediction model using the classification technique was 

developed—specifically, the model to predict the road segments with limited data. 

However, the road feature, such as bus stop or intersection, was not included in the 

features used as the predictor.  

The importance of bus stops and intersections in affecting traffic was discussed in 

[14], which studied the factors contributing to traffic congestion at some critical traffic 

points. The research also analyzes how those factors influence the road network using 

travel time-delay data. It found that bus stops, T-junctions, and cross junctions are the 

bottlenecks to the vehicle flow and result in slow vehicle movement. Therefore, its re-

sult becomes one of the driving factors in performing this study.  
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Another way to deal with traffic prediction problems is to use a combination of par-

ametric and non-parametric models; such was presented by Theodorou et al. in [15]. In 

his research, this combination method was developed to consider typical and atypical 

conditions in traffic prediction algorithms where the KNN regression model was used 

under atypical conditions. In contrast, the ARIMA model, on the other hand, was used 

when the typical situation was detected. Moreover, the initial research [3], [9] only ana-

lyzed one road or a few road segments. It is also supported in [8], as most traffic predic-

tion studies were done in a corridor or around a sensor location. Thus the workflow and 

automation to explore the network-wide scale prediction are needed. Therefore, the con-

tribution of this study can be summarised as follows: 

1. A traffic speed prediction using the features proposed by [3] considers the time 

of the day and the behavior of stores. Additionally, spatial features will be in-

cluded to see how they affect the prediction.  

2. Several ML algorithms used in [9] with some more models will be used to train 

the models. The prediction result from this study will be compared with the re-

sult from [9] to determine if the model performs better than the previous study.  

3. Some scenarios will be created to find an effective way to perform network-

wide traffic speed prediction using ML algorithms.  

Report Structure 

The remainder of this thesis has the following structure. Chapter 2 explains the 

theoretical framework of this study. Chapter 3 presents the data description and the 

method conducted in this research, followed by Chapter 4, which presents the results. 

Continued with the discussion in Chapter 0, and finally, in Chapter 6, the conclusions 

and further studies will be explained.  
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2 Theoretical Framework 

This chapter will explain the theoretical concept of traffic problems in our city, fol-

lowed by the basic idea of data mining. Additionally, there will be some explanation 

about several ML algorithms used in this study. Moreover, how ML can tackle traffic 

problems also will be discussed. 

2.1 Traffic Problems and Smart City 

Congestion happens when the number of vehicles circulating throughout the city road 

network exceeds the maximum traffic flow. It also qualifies as congestion when the sit-

uation affects the traffic flow and causes increasing journey times [1]. Figure 1 [1] can 

easily explain the correlation between the number of vehicles on the street and the time 

to traverse along a particular street to visualize this phenomenon.  

 

Figure 1: The concept of traffic congestion representation [1] 

Therefore, according to Figure 1, there will be times when the travel time for all ve-

hicles is the same when they can move at the usual speed. However, with increasing 

traffic volume, the time needed to traverse a street will be longer than when the volume 

is much lower. The increasing traffic volume has been a problem from the early 1990s 

until recent years and causes serious congestion problems, especially in large cities [1]. 

It is also caused by population growth, the increasing purchasing power of the middle-
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income socioeconomic classes, the relative reduction in vehicle prices, and the availa-

bility of used vehicles [1], [3].  

2.1.1 Factors Affecting Congestion 

Other than the massive contribution from using private vehicles, several other factors 

can cause congestion. These factors are [1]:  

1. The complexity of the public transport problem itself: for example, because the 

solution derives from the need to travel to the places that have different kinds of 

activities that take place in a different location; or because of the public transport 

that takes place on limited road spaces; and any other relevant example. This 

problem leads to congestion that occurs at various points.  

2. The urban road network design and maintenance: the example of this factor, 

such as failure to mark traffic lanes, unexpected changes in the number of lanes, 

and the location of the bus stop, can cause disturbances to the traffic flow. Addi-

tionally, the condition of the road might increase the congestion as well.  

3. Citizens’ driving habits include forcing their way into intersections, blocking the 

passage of other drivers, buses that stop before an intersection, and other habits 

that show that some drivers do not respect other road users. This type of habit 

can cause congestion or, in the worst case, cause an accident. 

4. The institutional problem may cause uncomprehensive planning. It may result in 

the development where it encourages people to use their private vehicles. Take, 

for example, uncoordinated action by the government official in deciding the 

city’s development. 

2.1.2 The Impacts of Congestion 

Traffic congestion can cause many harms to many aspects of life. The most direct im-

pact of this problem is the increasing time to travel from one point to another. It is not 

only caused by the reason already mentioned before but also because there will be a lot 

of public transport jams, resulting in slower travel time. The other effect of the conges-

tion is the pollution exhausted from the congested vehicles, which also may lead to 

health problems among the citizens that live around the congested area [3]. Moreover, 

congestion can also cause an increase in vehicle energy consumption. Therefore, this 

problem may lead to an unsustainable city’s lifestyle if it stays as it is for a long time 

[1]. 
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However, with the advancement of sensor technology and IoT, a massive amount of 

data can be gathered throughout the cities. These data can be used to monitor and pre-

dict traffic. By monitoring the traffic and the help of interconnected devices, the opera-

tor or the machine can send the signal to the user for real-time information. While on 

the other hand, the predictive analysis using these data can help the planer and decision-

maker to anticipate the problems and find out where and when these problems will oc-

cur. Additionally, by utilizing this development, the cities only have to invest in the 

technology, which has a lot less cost than building more roads or interchanges [3], [16].  

2.2 Data Mining  

Data mining is a process for extracting information from a massive amount of data to 

find new patterns or information for a particular problem. This technology is designed 

to utilize the stored data and extract new information using ML algorithms. The goal of 

this study is to predict continuous values of traffic speed. Thus, the algorithms used are 

the ones that can handle regression tasks. Some of the ML models used in this study are 

explained in the following sub-sections.  

2.2.1 Linear Regression (LR) 

LR or Ordinary Least Squares (OLS) is a classic and widely used model that uses the 

input feature's linear function to obtain the target value. The model consists of a de-

pendent variable (DV) or target, an independent variable (IV) or features, coefficients 

showing the IV’s proportion affects the DV, and the constant, as can be seen in the 

equation ( 1 ) below [17]. 

y = 𝑐0 + 𝑐1 ∗ 𝑥 
( 1 ) 

Through equation ( 1 ), we can find the “best line” that fits the data input with a 

minimum sum of squares difference between the model and the predicted value. The 

principal of finding this “best line” is fitting a linear model with a combination of coef-

ficients with a minimal residual sum of squares between the actual target value and the 

predicted target value. When dealing with more than one feature, the model becomes a 

multiple linear regression function, as seen in the following equation ( 2 ) below [17], 

[18]. 

y = 𝑐0 + 𝑐1 ∗ 𝑥1 + 𝑐2 ∗ 𝑥2 + ⋯ +  𝑐𝑛 ∗ 𝑥𝑛 
( 2 ) 
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This model is quite fast to train and predict. Also, it works well with a vast dataset 

and sparse data. Another strength of this model is the ease of understanding how the 

model is created [17]. However, this model relies on the independency of its feature. 

Therefore, the more correlated a feature, the design matrix becomes closer to singular. 

As a result, it creates a model prone to random error in the actual target value and pro-

duces a significant variance [18].  

2.2.2 K-Nearest Neighbors (KNN) 

The KNN model is the most straightforward ML algorithm. It will predict by looking at 

the k nearest data points in the training dataset, which is why it is called “nearest neigh-

bors.” In this scenario, k is an integer value specified by the user. After selecting k near-

est data points, the prediction will calculate the average or the most relevant neighbors, 

as seen in Figure 2 [17].  

 

Figure 2: A visualization of prediction using KNN regressor taking three neighbor points [17] 

As pictured in Figure 2, the KNN model strength is easy to understand. However, 

this model has some flaws, such as being unable to deal with a large amount of data and 

leading to a slower processing time. Thus, this model is not often used in practice [17].  

The algorithm typically uses uniform weights, meaning that the local neighbor 

points contribute equally to the point that is being predicted. However, the weighting 

parameter can be changed to the distance to imply that the nearest points contribute 

more compared to the points that are far away [17], [19].  
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Several algorithms can be applied to optimize the model: Brute Force, K-D Tree, 

and Ball Tree. The difference between each algorithm is how efficient the distance cal-

culation is performed. However, this does not mean that the most inefficient algorithm 

should not be used. For example, using the brute force algorithm in a small dataset is 

more efficient than any other tree-based approach [16]. Therefore, one thing to consider 

when selecting the algorithm is how big the data sets will be predicted. 

2.2.3 Support Vector Regression (SVR) 

SVR is a part of Kernelized Support Vector Machine (SVM) which allows complex 

models and is not defined simply by hyperplanes in the input spaces and implemented 

in the regression problems [17]. SVM constructs a hyper-plane or a set of hyper-planes 

in a high or infinite-dimensional space. SVM will have good separation when the hyper-

plane has a significant distance to the nearest training data point of any class—the more 

significant the distance, the lower the generalization error of the classifier. Figure 3 be-

low shows how SVM creates so-called “support vectors” with three samples on the 

margin boundaries [17], [20].  

 

Figure 3: Decision function for linear problem creating “support vectors” [20] 

The Gaussian kernel measures the distance between the data points with the follow-

ing equation ( 3 ) [9], [17].  

𝑘𝑟𝑏𝑓(𝑥1, 𝑥2) = exp (ɣ‖𝑥1 − 𝑥2‖2) 
( 3 ) 

In equation ( 3 ), 𝑥1 and 𝑥2 are the data points, ‖𝑥1 − 𝑥2‖ is the Euclidean distance, 

and ɣ is the parameter that controls the width of the Gaussian kernel [17].  
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SVR is a powerful ML model used on various low- or high-dimensional datasets. It 

also allows complex decision boundaries, even if the data is only a few. However, its 

requirement for computing and storing will increase rapidly along with the increment 

number of training data. Thus, working with 10,000 samples of SVR might work well, 

but when the dataset has 100,000 samples or more, it will be more challenging in terms 

of runtime and memory usage. Moreover, parameters C and ɣ can be tuned to improve 

the performance of the SVR model [17], [20].  

2.2.4 Decision Trees (DTs) Regression  

DTs model is a non-parametric supervised learning method that can be used for classifi-

cation or regression tasks. The model learns a hierarchy of if/else questions from its fea-

tures, leading to a decision that predicts the target value. The following Figure 4 shows 

the DTs model result. It also shows that the depth of the trees affects model complexity, 

but the fitter the model [21].  

 

Figure 4: Example of DTs regressor result visualization [21] 

From Figure 4, we can conclude that the resulting model is easy to visualize and un-

derstood by the nonexperts. Also, the other advantage of using this model is that it re-

quires a bit of data preparation, as it is utterly invariant to the data scaling [17], [21]. 

However, DTs regressor and all other tree-based regression models cannot make predic-

tions outside the training data range. It means that DTs might produce an overfitted 

model, which is very good at predicting the training dataset, but once leaving the train-
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ing data range, the model will keep simply predicting the last known point. The problem 

can be minimized by controlling the complexity of the decision tree model using the 

pre-pruning parameters that stop the tree before it is fully developed [17], [22]. 

2.2.5 Random Forest (RF) Regression  

RF is a part of an ensemble model that combines multiple ML models to create more 

powerful models. This model is intended to overcome the drawback of the DTs model, 

which tends to overfit the training data. Thus, the idea of RF is performing multiple 

DTs, where each tree is slightly different from the others and drawn from the training 

set. Therefore, by creating many trees, each tree will overfit in different ways, and the 

problem can be reduced by averaging their results [9], [17], [23]. Figure 5 visualize how 

RF predicts this thesis's speed value [9]. 

  

Figure 5: Visualization of how the RF prediction model works [9] 

In splitting each node when constructing a tree, two options of parameters can be se-

lected. Either from all input features or from a random subset with the size of 

“max_features” inserted by the user. These parameters can decrease the variance of the 

forest estimator, as some errors from DTs will cancel out each other, and thus, RF will 

become less prone to overfitting [17], [23]. As a result, RF becomes more robust and 

accurate compared to DTs [22]. However, RF is not working well on very high-

dimensional and sparse data. Also, it requires much memory, resulting in a slower pro-

cessing time [17].  
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2.2.6 Gradient Boosting (GB) Regression 

Like RF, GB is also part of an ensemble model that combines multiple DTs and can be 

used for classification or regression tasks. However, GB work by serially building trees. 

Thus, it will correct the mistakes from the previous trees. It often uses very shallow 

trees with a depth from one to five, which makes the model smaller in memory and 

leads to faster processing. With this combination of shallow trees, each of them will 

provide a good prediction on the part of the data. After iteratively adding this shallow 

tree, the model's performance will eventually be improved [17], [23].  

Several parameters can be set to optimize the GB model: pre-pruning the trees, ad-

justing the number of trees, and controlling the learning rate. Increasing the number of 

trees will increase the model complexity and might be able to correct mistakes on the 

training sets. At the same time, increasing the learning rate will also allow for a more 

complex model as each tree can make more substantial corrections. However, increas-

ing the model complexity might also lead to overfitting [17].   

2.2.7 Multilayer Perceptrons (MLPs) 

MLPs are known as the feed-forward neural networks (NN), part of the “deep learning” 

family algorithm. It can be seen as a generalization of linear models that perform multi-

ple processing stages to find the decision. Similar to the linear problem, predicting the 

output works to find the weight of the input features. However, in MLP, the process of 

computing the weight is done multiple times. Figure 6 below shows the process of the 

NN in predicting the target value.  

 

Figure 6: Visualization of how the NN model works in predicting the traffic speed [9] 
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In Figure 6, each node on the left represents an input feature, while the node on the 

far right side is the output, which in the figure below is the predicted mean speed. MLP 

has many more calculated weights or coefficients represented by the connecting lines 

from the input feature node to the hidden layer, from the first hidden layer to the next 

hidden layer, and so on, until it reaches the output node. In addition, after computing the 

weighted sum for each hidden layer, a non-linear function—such as a hyperbolic func-

tion, is performed to calculate the weighted sum used to compute the output [17], [24].  

In this study, MLPRegressor is used, which implements MLP that trains using 

backpropagation with no activation in the output layer; thus, it uses the square error as 

the loss function, and the output set is a set of continuous values. This model can learn 

non-linear models and works in real-time, which are the advantages of using this model. 

Thus, this model can create an incredibly complex model. However, as MLP has a non-

convex loss function, applying weight initialization is necessary to increase the valida-

tion accuracy. Therefore, the drawback of using MLP is the requirement to tune several 

hyperparameters such as hidden neurons, layers, and iteration. Moreover, MLP takes a 

long time to train, and it is sensitive to feature scaling, which leads to the need for care-

ful data preprocessing [9], [17], [24]. 

2.3 Intelligent Transportation System (ITS) 

Currently, because the capabilities of sensors or other data collection systems have in-

creased significantly, the amount of data with a variety of quality and types are vastly 

available. Simultaneously, this factor becomes an opportunity and challenge for devel-

oping an Intelligent Transportation System (ITS) [8], [11]. It is developed to provide a 

safer, coordinated, and “smarter” transportation system to minimize traffic congestion 

and achieve efficient traffic. It has the advantage of providing affordable and convenient 

transport options and keeping track of incidents and congestion for road users and 

travelers [3]–[6]. ITS has become a solution that attracted much interest, as it can col-

lect and process data from different sources using current computer infrastructure and 

the latest algorithms to create efficient traffic [25].  

Because the ITS relies on the quality of traffic information, the study of traffic pre-

diction has become one of the most developed research areas [8], [9], [11]. According to 

[7], the traffic prediction’s final target is to make actual transportation intelligent. 
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Therefore, building a unified ITS that can manage different data sources and efficiently 

handle traffic data analysis and mining processes in one environment is necessary. 

2.4 Traffic Prediction using Machine Learning 

A mathematical model can describe the traffic phenomenon and perform a prediction 

through it. Therefore, we can analyze the issues if we have the information to optimize 

the traffic parameters [26]. Moreover, many methods were proposed to forecast the traf-

fic speed, volume, density, and travel time in the last three decades, aiming to improve 

the prediction accuracy [4], [8], [9]. According to [8], because the traffic conditions are 

becoming more complex, with the addition of sensors and computational power devel-

opment, rather than using classical statistic methods, most studies are shifting towards 

computational intelligence (CI) in traffic prediction.  

There are several scenarios for traffic prediction: short-term (e.g., 10-15 minutes 

ahead), long-term (e.g., next day), congestion prediction, and travel times analysis (by 

analyzing the shortest route and forecasting the traffic). As traffic problem is a much 

more complex phenomenon, it is often disturbed by sudden incidents such as accidents 

and extreme weather. Thus linear regression model is insufficient [11]. Many studies 

use Recurrent Neural Networks/LSTM to tackle this problem [8], [26]. However, in this 

study, these sophisticated models were not used due to the process's complexity. 

Numerous applications utilize the result of traffic prediction. For example, in real-

time traffic management, we can generate the typical traffic profiles from real-world 

traffic data (i.e., FCD data). Then, these profiles can act as an input to the NN model, 

together with the real-time traffic data, to recalibrate the traffic parameters if an atypical 

condition occurs in the road network. The other applications are to find the optimal lo-

cation and capacities for parking and charging stations and the optimal tolling policies 

[26]. Some of these applications require a network-wide scale traffic prediction, which 

has become an important and challenging topic [8]. 
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3 Methodology 

This chapter will discuss the data used in this study, continued by how it is preprocessed 

and processed to obtain the prediction result. This section will also explain how the 

model will be evaluated.  

3.1 Methodology 

This study aims to improve the model performance from [9] using the idea from [3] and 

to find the best scenario for predicting the traffic speed on a network-wide scale. Thus, 

the prediction process can be simpler and faster.  

Therefore, the general idea for the methodology is first to prepare the data in a way 

similar to [3]. At the same time, for the case when multiple road segments are analyzed, 

additional spatial features from OSM Data are added to the input features. After the in-

put data is ready, the input dataset is then selected and masked accordingly, so the se-

lected data satisfy each scenario. Before the assessment, after training the data input, 

each ML model will be evaluated and hyperparameter tuned to reach the optimum re-

sult. Eventually, the prediction result will be used to assess the ML models' performance 

and find the best scenario for network-wide prediction. 

The overall process in this study is conducted using Python 3.8.8 programming with 

the scikit learn 1.0.2 library [27]. The IDE used for this process is Jupyter Notebook in 

Microsoft Visual Studio. The traffic speed data is stored and preprocessed using the 

Postgre SQL database. Additionally, some spatial data preprocessing is done using 

QGIS software to obtain spatial-related features.  

3.2 Data 

3.2.1 Floating Car Data (FCD) 

The data used in this study are some subsets of an FCD produced by a taxi fleet belong-

ing to the taxi association “Taxiway,” which consists of vehicles operating in the region 

of Thessaloniki [9]. According to personal interaction with (Tzenos, 2022), to produce 

the network-speed dataset, the data was processed as follows: 



-16- 

1. Initially, the record regarding personal information from the voluntary vehicle or 

driver identification is discarded in the beginning process of all the available 

FCD records to consider the privacy aspect; 

2. Then, the remaining records are filtered to remove any erroneous entries with 

extraordinary speeds or unaligned coordinates, or entries generated by faulty 

GPS receivers; 

3. Using a specific algorithm that takes into account the network topology (mono-

graphs, types of roads, and other network topology related.), each record (GPS 

entry) is mapped to the part of the road network to which it belongs with the 

highest degree of certainty; 

4. Finally, for each link (osm_id) of the road network, proper statistical analysis is 

performed to provide a safe estimation of the average speed on that link. 

This process produced the “speed_kmph” values in kilometers per hour, and it de-

notes the average speed on each link with steps that occur every 15 minutes. The data 

also has a “unique_entries” value that indicates the number of different vehicles (per 15 

minutes) that produced the GPS data to make the average speed on each link. This data 

can be used to determine each link’s congestion status (low, medium, and high), using a 

set of rules created for each link type. These rules consider the “Free flow speed” value, 

which during the conversion of speed values into congestion status, the ratio of “ob-

served_speed/free_flow_speed” is evaluated (Tzenos, 2022). The following Table 1 

shows the sample of the data downloaded from [28],  

Table 1 Data sample from the source 

osm_id link_dir date_time speed_kmph unique_entries 

181919282 1 2018-04-09 12:15:00 75 1 

175724175 1 2018-02-17 14:15:00 87 2 

18623648 2 2018-02-13 00:30:00 40 1 

14886450 1 2018-01-17 13:15:00 25 1 

401315597 1 2018-04-03 08:00:00 25 1 

 

The obtained data is a collection of already processed FCD data grouped for each 

month from 2018 to 2022. It has roughly 37,469,181 records each year, which means 

the data has around 149,876,724 entries.  



  -17- 

3.2.2 OpenStreetMap (OSM) Data 

OSM is an open-source map data built, contributed, and maintained by a community 

of mappers. The data contains worldwide information on roads, trails, cafés, buildings, 

railway stations, and other geospatial features. The data is produced using aerial image-

ry, GPS devices, and low-tech field maps to verify the accuracy of the information by 

emphasizing its contributors’ local knowledge [29]. From OSM, the data on road net-

works and bus stops are obtained, as shown in Figure 7 below. It is displayed using 

QGIS 3.16, open-source software that can process geospatial data.  

      

Figure 7: Road network and bus stop distribution in Thessaloniki    

The road network data contain osm_id, railway, name, and many more features. 

However, some unnecessary features are dropped, leaving only osm_id, oneway, name, 

and type. On the other hand, bus stops data has features such as osm_id, public_tra, 

amenity, name, type, and more. Moreover, the used features are only osm_id and name 

for this data. Something to note here is that the osm_id in the road network feature is 

matched with the osm_id in FCD data and will be joined in the preprocessing step. The 

following Table 2 is the description of the features that are used in this study.  

Table 2 Feature description from OSM data 

Feature Description 

Osm_id (road network) 
A unique id related to each segment in the road network 
links the OSM data with FCD data. 

Name (road network) The name of the road 

Oneway 
It shows the information whether the segment is a one-
way road or not. 
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Table 2 Feature description from OSM data (Continued) 

Feature Description 

Type  The road type, according to OSM data. 

Osm_id (bus stops) A unique id related to the bus stop 

Name (bus stops) The name of the station 

 

In the preprocessing step, these data are merged by the nearest feature to get the in-

formation on whether the road segments have a bus stop or not. So then, later, the data 

can be joined with FCD data to produce the data input for creating a prediction model.  

3.3 Data Preprocessing  

The preprocessing stage deals with preparing FCD and OSM data and continues by 

combining these data. The first stage consists of the preprocessing part of FCD data to 

extract information from the current data and obtain new information. The prepro-

cessing stage of OSM data continued them to gain necessary features from geospatial-

related objects. The preprocessing step ends when FCD and OSM data are joined, and 

some road segments are selected to be ready as an input to create the prediction model. 

3.3.1 The Store Feature 

The FCD data comes in a text file for each month from January 2018 until March 2022, 

so the data were concatenated and converted into a SQL table for further processing. A 

python program in Appendix A was used to concatenate the files into a single table and 

store them in a database. In the PostgreSQL software, the data was preprocessed using 

some code fragments in Appendix B to derive information such as the year, month, day, 

hour, and minutes from the “date_time” column.  An additional feature, “store,” is 

added to the current data by using the rules used in [3]. The rules are defined as follows: 

1. The stores status is ‘open’ from 09:00 to 20:59 on Tuesday, Thursday, and 

Friday; while on Monday, Wednesday, and Saturday, the stores are open from 

09:00 to 17:59; 

2. The stores status is ‘opening’ from 07:30 to 08:59 on all days except Sunday; 

3. The stores status is ‘closing’ from 21:00 to 22:00 on Tuesday, Thursday, and 

Friday; while on Monday, Wednesday, and Saturday, the stores are closing from 

18:00 to 19:00; 

4. Other than the previous cases, the store status is closed.  
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Thus, the effect of store behavior on the road speed network can be incorporated 

into building the prediction model with this additional feature. This preprocessing result 

can be seen in Table 3. Note that the table only shows the new column extracted from 

the original data. Practically, the following features co-exist with the original data.  

Table 3 Sample result of preprocessing on FCD data 

osm_id n_time hours mins n_day n_month stores 

332282307 11:45 11 45 SUNDAY MAY CLOSED 

534308047 1:15 1 15 SUNDAY MARCH CLOSED 

388902759 13:00 13 0 THURSDAY SEPTEMBER OPEN 

14301548 21:45 21 45 SATURDAY APRIL CLOSED 

163255795 19:30 19 30 FRIDAY AUGUST OPEN 

3.3.2 The Road Feature 

The downloaded OSM data of Thessaloniki comes in three separate shapefile formats 

according to its geometry: point, line, and polygon. For this study, the analysis only 

used the points and lines shapefile.  

Feature Extraction 

The first step of preprocessing the OSM data start with feature extraction. Because the 

points and lines shapefiles contain not only the information needed for the analysis, it is 

necessary to apply feature selection to select only road network and bus stop features.   

Road Network 

Figure 8 below shows the sample result of road network selection. From the figure, the 

line shapefile contains all geographical features such as rail and road networks. 

 

Figure 8: Line shapefile data with all features (left) and selected road network data (right) 
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Road network feature comes from line shapefile that contains various information 

such as road network itself, train line, proposed metro line, and some other features that 

can be depicted as line geographically. Therefore, a spatial query was performed in the 

QGIS application to extract the road network feature, as shown in Figure 8. After the 

feature selection, the road network is further preprocessed to filter only the necessary 

columns (features) for analysis. Table 4 below shows a random sample of the selected 

column from the road network data. 

Table 4 Sample result of preprocessing on the line shapefile from OSM data 

osm_id oneway name highway Road_lt_m 

1000447998 yes null secondary_link 13 

1000447999 no Θεσσαλονίκης - 
Κιλκίς 

secondary 58 

1020353755 yes Κωνσταντίνου 
Καραμανλή 

primary 48 

1020644502 yes null primary_link 26 

1020673255 yes Μοναστηρίου primary 9 

 

From Table 4, the road length feature was calculated, showing the length of a road 

segment that constructs an entire road. For example, in Figure 9 below, the Egnatia 

street is one of the longest roads in Thessaloniki, as it has 66 road segments.  

 

Figure 9: Egnatia street 

Bus Station 

The exact process was applied to the points shapefile data to obtain bus stop features. In 

the beginning, the data contains information regarding bus stops and all other geograph-



  -21- 

ical features in point forms, i.e., rest areas, give way signs, traffic signals, crossings, and 

other features. Therefore, a spatial query was done to obtain only the bus stop feature. 

Figure 10 shows the result of the feature selection.  

 

Figure 10: The subset of point shapefile (left) and feature selection result of a bus stop (right) 

Moreover, some unnecessary columns were dropped, leaving only the id and name 

column. These columns are needed to validate the following process of joining bus 

stops and road network features.  

Feature Join 

A feature join process was applied after the road network, and bus stop features were 

ready. This process determines whether a bus stop occurs in the segments. Therefore, a 

tool that analyzes the closest point from a line is needed. Using Distance to Nearest Hub 

(points), one of QGIS 3.16 processing tools, a new column feature containing the dis-

tance between the closest point and a line was created. Moreover, the distance was 

checked numerically and visually to validate the process. Table 5 shows the result of 

this process.  

Table 5 Sample result of joining road network and bus stop in OSM data 

osm_id oneway name highway road_lt_m nrst_bus bus_stop stop_dist 

112282624 yes Εγνατία primary 233 5340987236 yes 3.416 

469586088 yes 
Γρηγορίου 
Κολωνιάρη 

secondary 197 3115198174 yes 2.983 

47019446 yes   cycleway 380 5405630104 yes 2.195 

13769290 yes   secondary_link 41   no   

14159818 yes 
Καπετάν 
Άγρα 

tertiary 337   no   

 

Note that for further processing, the ‘stop_dist’ feature from Table 5, which tells the 

distance between the bus stop to the closest road segment, was not included in creating 

the prediction model.  
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3.3.3 Joining FCD and OSM Data 

At this stage of preprocessing, OSM data which is now only a road network shapefile 

containing the features as depicted in Table 5, is then joined to preprocessed FCD data 

to give it more features for creating the prediction model. The process was done in 

PostgreSQL software with PostGIS extension to import OSM data into the database. 

Joining these two datasets was done using the code fragment in Appendix B, and the 

sample result can be seen in Table 6. 

Table 6 Sample result of joining preprocessed FCD and OSM data 

date_time osm_id speed_
kmph 

hours mins n_day stores Road_lt
_m 

Bus_
stop 

2018-01-01 
00:00:00 

14904476 33 0 0 MONDAY CLOSED 96 No 

2018-01-01 
00:00:00 

174486699 26 0 0 MONDAY CLOSED 146 No 

2018-01-01 
00:00:00 

302472924 28 0 0 MONDAY CLOSED 88 No 

2018-01-01 
00:15:00 

14904476 20 0 15 MONDAY CLOSED 96 No 

2018-01-01 
00:15:00 

35355049 41 0 15 MONDAY CLOSED 165 No 

 

Note that some columns do not appear in Table 6 for visualization purposes. These 

columns are ‘link_dir,’ ‘months,’ and ‘highway.’ Therefore, there are 14 features in the 

input data. However, some of these columns are eventually not included in creating the 

prediction model, which is discussed more in the following subsection. For pilot pro-

cessing, some road segments were selected according to the results from the shortest 

route analysis using network analysis tools in QGIS. The results of this road selection 

can be seen in Figure 11 and Figure 12. 

 

Figure 11: Selected Road based on the shortest route from Egnatia Street to Aristotelous Street 

(left) and the only available FCD data on the selected route shown in red lines (right) 
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However, after inspecting these preprocessing results, it is found that not all road 

segments in OSM data have the corresponding FCD data. Therefore, some problems 

arise when selecting some road segments, as depicted in Figure 11 and Figure 12. Be-

cause the data gap in Figure 11 was quite big, another road was selected for analysis: 

the Tsimiski street, as pictured in Figure 13.  

 

Figure 12: Selected Road based on the shortest route from Egnatia Street near East Thessaloniki 

Byzantine Walls to the Junction that leads to Monastiriou or Lagkada (left) and the only availa-

ble FCD data on the selected route shown in red lines (right) 

 

Figure 13: Selected Road segments on Tsimiski street 

Hence, the subset of joined data for analysis was established in some parts of the 

Egnatia and Tsimiski street. The selected data were varied, consisting of up to four 

years of data to see how the model is affected by the number of data fed as an input. It 

also varied based on the number of segments selected with and without a gap between 

segments to study how it affects the model accuracy. The selected data are visualized in 

Figure 12 and Figure 13. Note that all preprocessed data were saved into CSV files for 

further processing.  
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3.4 Data Processing  

This stage explains how the selected data was processed and evaluated. Several ML al-

gorithms were tested to see which algorithms were most appropriate for the data. Some 

evaluation parameters were also applied to find which algorithm gives the lowest error 

while comparing the results achieved in [9].  

3.4.1 Applying Machine Learning Algorithms 

As already discussed in the Theoretical Framework section, because the feature that 

wants to be predicted in this study is a speed value, which is continuous, regression ML 

algorithms were used. This process was done using Python 3.8.8 programming with the 

scikit learn 1.0.2 library [27]. The IDE used for this process is Jupyter Notebook in Mi-

crosoft Visual Studio.  

Initially, the selected data were read using Pandas’ library and converted into a data 

frame. Then, the input data was inspected to drop the missing values. After that, the 

prediction target column—speed_kmph, was selected.  

 

    # Read the data 

 df = pd.read_csv('selected_route_18.csv', sep=',') 

 df.dropna(axis=0, how='any', inplace=True) ... 

    # Split df into X and y 

    # Selecting the prediction target (label) 

    y = df.speed_kmph 

 

 

Then, the features that act as the predictor in creating the model are selected. For 

this analysis, the selected features are osm_id, hours, mins, day, month, year, stores, 

road_lt_m, and bus_stop. Note that link_dir and highway were also added as features in 

the beginning. However, because these features only contain one unique value, they will 

not affect the prediction model; hence these features were not included. Because some 

of the features were still in categorical values, label and one hot encoding were per-

formed to transform these features into numerical values.   

  

   # Selecting the 'features' 

    data_features = ['osm_id', 'hours', 'mins', 'n_day_n', 'n_month_n',  

      'stores_n','road_lt_m', 'bus_stop_n'] 

    X = df[data_features] 
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Label Encoder 

This encoder can be applied to numerical and non-numerical labels as long as it is com-

parable to numerical labels [17], [18]. It normalized labels so the feature will contain 

only values between 0 and n_classes-1. Table 7 shows the result of this encoding. 

 
    # Convert all the features with label encoder 
    df['n_time_n'] = LabelEncoder().fit_transform(df['n_time']) 
    df['n_day_n'] = LabelEncoder().fit_transform(df['n_day']) 
    df['n_month_n'] = LabelEncoder().fit_transform(df['n_month']) 
    df['stores_n'] = LabelEncoder().fit_transform(df['stores']) 
    df['highway_n'] = LabelEncoder().fit_transform(df['highway']) 
    df['bus_stop_n'] = LabelEncoder().fit_transform(df['bus_stop']) 
 

Table 7 Value comparison before and after applying label encoder to categorical features 

Before Label Encoder After Label Encoder 

time values: ['00:00' '00:15' 
'00:30' '00:45' '01:00' '01:15'... 
'23:45']  
 
day values: ['MONDAY ' 'TUESDAY ' 
'WEDNESDAY' 'THURSDAY ' 'FRIDAY ' 
'SATURDAY ' 'SUNDAY ']  
 
month values: ['JANUARY ' 'FEBRUARY 
' 'MARCH ' 'APRIL ' 'MAY ' 'JUNE ' 
'JULY ' 'AUGUST ' 'SEPTEMBER' 'OCTO-
BER ' 'NOVEMBER ' 'DECEMBER ']  
 
stores values: ['CLOSED' 'OPENING' 
'OPEN' 'CLOSING']  
 
bus_stop values: ['no' 'yes'] 

time values: [ 0 1 2 3 4 5 6 7 8 9 
10 11 12 13 14 15 17 16 18 19 ... 
95]  
 
day values: [1 5 6 4 0 2 3]  
 
month values: [ 4 3 7 0 8 6 5 1 11 
10 9 2]  
 
stores values: [0 3 2 1]  
 
bus_stop values: [0 1] 

 

One Hot Encoder (OHE) 

This encoder will convert categorical features as a one-hot numeric array [30]. The re-

sult of this process can be seen in Table 8 below. The code using OHE can be seen be-

low.  

 

 # Convert features with one hot encoder 
 # Emit highway and bus_stop for one segment process ['n_day', 
 'stores', 'n_month', 'highway', 'bus_stop'] 
 column_trans = make_column_transformer( 
     (OneHotEncoder(), ['n_day', 'stores', 'n_month', 'bus_stop']), 
     remainder='passthrough' 
 X = column_trans.fit_transform(X) 
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Table 8 Value comparison before and after applying one hot encoder to categorical features 

Before One Hot Encoder After One Hot Encoder 

time values: ['00:00' '00:15' 
'00:30' '00:45' '01:00' '01:15'... 
'23:45']  
day values: ['MONDAY ' 'TUESDAY ' 
'WEDNESDAY' 'THURSDAY ' 'FRIDAY ' 
'SATURDAY ' 'SUNDAY ']  
month values: ['JANUARY ' 'FEBRUARY 
' 'MARCH ' 'APRIL ' 'MAY ' 'JUNE ' 
'JULY ' 'AUGUST ' 'SEPTEMBER' 'OCTO-
BER ' 'NOVEMBER ' 'DECEMBER ']  
stores values: ['CLOSED' 'OPENING' 
'OPEN' 'CLOSING']  
bus_stop values: ['no' 'yes'] 

array ([ 
[ 0., 1., 0., ..., 0., 0., 72.],  
[ 0., 0., 0., ..., 14., 45., 72.],  
[ 0., 1., 0., ..., 0., 0., 42.], 
..., [ 0., 0., 0., ..., 0., 0., 
42.],  
[ 0., 0., 0., ..., 0., 0., 72.],  
[ 0., 0., 0., ..., 0., 0., 542.] 
]) 

 

However, some sources state that Label Encoder should not be used for categorical 

features with more than two values; it should also be used only for target values  [31]–

[33]. Nevertheless, the feature encoding process still uses both ways to see how it af-

fects the final prediction. After encoding categorical values and selecting both features 

and target column, the data was split into training and test dataset.  

 
   # Train-test split 
   train_X, val_X, train_y, val_y = train_test_split(X, y,     
          train_size=0.7, shuffle=False,  
           random_state=1) 

 # Scale X 

    scaler = StandardScaler() 

    scaler.fit(train_X) 

    train_X = pd.DataFrame(scaler.transform(train_X), index=train_X.index, 

    columns=train_X.columns) 

    val_X = pd.DataFrame(scaler.transform(val_X), index=val_X.index,  

    columns=val_X.columns) 

 

 

Because the data input for creating the model is still not standardized, the Standard-

Scaler utility from the Scikit-learn processing module was applied to training and test 

features. This process was done because many ML algorithms require individual fea-

tures to be standard-normally distributed data [34]. Table 9 shows the results after ap-

plying standard scaling to the dataset.  

Table 9 Value comparison before and after applying standard scaler to the features 

Before Standard Scaler After Standard Scaler 

Variance before scaler:  
osm_id 1.929929e+16  

Variance after scaler:  
osm_id 1.000007  
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Table 9 Value comparison before and after applying standard scaler to the features (Contin-

ued) 

Before Standard Scaler After Standard Scaler 
hours 4.783168e+01  
mins 2.815786e+02  
n_day_n 4.018732e+00  
n_month_n 1.012323e+01  
stores_n 1.115074e+00  
road_lt_m 1.164300e+04  
bus_stop_n 1.306943e-01 

hours 1.000007  
mins 1.000007  
n_day_n 1.000007  
n_month_n 1.000007  
stores_n 1.000007  
road_lt_m 1.000007  
bus_stop_n 1.000007 
 

Variance before scaler: 
920443936122033.5 

Variance after scaler:  
0 1.000045  
1 1.000045  
2 1.000045  
3 1.000045  
4 1.000045  
5 1.000045  
6 1.000045  
... 

 

After those processes, ML algorithms can be applied to the training dataset to pro-

duce the models. Several ML algorithms were selected for this study to find suitable 

algorithms for predicting the speed value.  

 
models = { 
    "                     Linear Regression": LinearRegression(), 
    "                   K-Nearest Neighbors": KNeighborsRegressor(), 
    "                        Neural Network": MLPRegressor(), 
    "Support Vector Machine (Linear Kernel)": LinearSVR(), 
    "   Support Vector Machine (RBF Kernel)": SVR(), 
    "                         Decision Tree": DecisionTreeRegressor(), 
    "                         Random Forest": RandomForestRegressor(), 
    "                     Gradient Boosting": GradientBoostingRegressor() 
} 
for name, model in models.items(): 
    model.fit(train_X, train_y) 
    print(name + " trained.") 
 

3.4.2 Evaluating Applied Algorithms  

After the prediction models were created, a performance evaluation was conducted. For 

the regression method, several evaluation methods can be used. Thus, for this study, the 

R2 score, root mean square error (RMSE), Mean Absolute Error (MAE), and Cross-

Validation method were applied to measure model performance. 

 

from sklearn.metrics import r2_score, mean_absolute_error, 

mean_squared_error 
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for name, model in models.items(): 

    val_predict = model.predict(val_X) 

    print(name + " R^2 Score: {:.5f}".format(r2_score(val_y, val_predict))) 

    print(name + " RMSE: {:.5f}".format(np.sqrt(mean_squared_error(val_y, 

   val_predict)))) 

    print(name + " MAE: {:.5f}".format(mean_absolute_error(val_y, val_pre

   dict))) 
 

 

R2 Score 

R2 score metric shows the variation in the features that is predictable from the target 

feature. Therefore, it can tell how good the prediction result is, based on the proportion 

of total variation of results produced by the model. The metric is calculated using equa-

tion ( 4 ) below [35], [36].  

R2(𝑦, 𝑦̂) = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 ( 4 ) 

The value of the R2 score ranges from 0 to 1, and this metric can be intuitively more 

informative than the later metrics [35].  

Root Mean Square Error (RMSE) 

RMSE measures the root average of the squares of residuals between two data sets, the 

actual and predicted values. This evaluation metric is calculated using equation ( 5 ) 

[36]–[38]. 

RMSE (𝑦, 𝑦̂) = √
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

( 5 ) 

This metric calculates the accuracy in comparing prediction errors between different 

models for a particular dataset because it is scale-dependent. Thus, this cannot be used 

to compare the accuracy between datasets [38].  

Mean Absolute Error (MAE) 

MAE measures errors between two sets of data that express the same phenomenon. For 

this study, the comparison between labels’ actual value and predicted value which cal-

culated using equation ( 6 )  [36], [39].  

MAE (𝑦, 𝑦̂) =
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 ( 6 ) 



  -29- 

For equations ( 4 ), ( 5 ), and ( 6 ), 𝑦̂𝑖 is the predicted value and 𝑦𝑖 is the actual speed 

value. This evaluation methods except R2 score have the same unit as the predicted val-

ue. Thus, the error measurement unit for this study is km/h. Therefore, the lower the 

value error of RMSE and MAE (closer to 0), the model is a perfect fit for the data. On 

the other hand, for the R2 score value, the closer the value to 0 means the model is not 

fit with the data [35], [36], [38], [39]. 

Cross-Validation 

This technique is applied to avoid overfitting the prediction model. The process will 

cross-validate the model to find the best parameters through the workflow shown in 

[40], depicted in Figure 14 below. 

 

Figure 14: Cross-validation process [40] 

Cross-validation in this study is used to check whether the model is overfitted and to 

see if the model score is correct. It is done using the k-fold, where the k value represents 

the number of split groups of the smaller training set. Then, the model will be trained 

using k-1 of the folds, and the resulting model is validated on the remaining part of the 

data. Therefore, overfitting can be avoided as the process of tweaking the settings (hy-

perparameters) for the prediction model is already put in the test set out for final valida-

tion. Other than avoiding overfitting, the advantage of using this technique is that the 

process does not waste too much data. However, this process can be computationally 

expensive [36], [37]. The following code shows how cross-validation is implemented.  
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# Implementing Cross Validation techniques 

from sklearn.model_selection import cross_val_score 

 

scores = cross_val_score(data_model, train_X, train_y, cv=10) 

scores 
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4 Results  

This chapter presents the results from the processing step explained in the previous sec-

tion. Firstly, this part assesses how the model results compared to the previous study. 

After that, it compares the results between the selected road segments and the results 

between the number of data selected. It also covers the problem regarding the availabil-

ity of FCD data throughout the OSM data and how the result might affect the network-

wide prediction. 

4.1 Assessment of Prediction Results  

This section will present the prediction result from several scenarios applied to the data. 

First, the prediction results were assessed using the scenario mentioned in [9], which 

are: 

1. Speed prediction at random dates and times on randomly selected roads,  

2. Speed prediction at eight consecutive times on random dates and randomly se-

lected roads, and  

3. Speed prediction for 24 hours on random dates and randomly selected roads.  

These scenarios were tested only on Tsimiski street and only at one road segment to 

simplify the processing. It was selected as the previous study did not mention the exact 

road segment that was selected, and through this study, the Tsimiski road segment data 

is found to have good quality data. Moreover, the data on Tsimiski was selected be-

tween January to March 2019. It was done to select the data within the time frame of the 

data used in [9]. The selected data on road segment 17665188 has 14,381 records, and 

after interpolation was applied to fill the gap between the data, the total records became 

14,495 records. The following Table 10 shows the R2 score for each model. 

Table 10 R2 score for each model  

 Scenario LR KNN NN 
SVR 

(Linear) 
SVR 

(RBF) 
DT RF GB 

R
2
 

S
c
o
re

 Tsimiski Street 
(Test Data) 

0.27 0.58 0.65 0.27 0.63 0.63 0.64 0.64 

Tsimiski Street 
(Training Data) 

0.27 0.71 0.69 0.27 0.63 0.66 0.66 0.65 
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The model was trained on the data two weeks prior to the data for assessment. In 

this case, the data from 1st January until 14th February 2019 was selected for training 

data. For these scenarios, the input features that were used are hours, minutes, days, and 

stores feature. Several features were dropped because there was only one unique value 

when only one road segment was selected. From Table 10, the training and test data 

scores were compared to ensure that the model does not overfit the training sample. 

Note that these results were accomplished after tuning the hyperparameter for each 

model. The code for these comparisons can be found in Appendix D. 

4.1.1 Random Dates and Times 

For this scenario, 35 records with random times and dates were selected between 15th 

and 28th February 2019. Figure 15 shows the RMSE comparison for all models.  

 

Figure 15: RMSE comparison between models when assessing the scenario on random dates 

and times 

Moreover, Table 11 shows the MAE in km/h, which expresses the average model 

prediction error from testing 35 random selection of times and dates.  
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Table 11 Average MAE score for all models at 35 random dates and times  

 Scenario LR KNN NN 
SVR 

(Linear) 
SVR 

(RBF) 
DT RF GB 

M
A

E
 

Tsimiski Street  4.74 2.41 2.48 4.68 2.56 2.60 2.62 2.67 

 

Figure 15 and Table 11 show that LR and SVR linear models can be ruled out of the 

competition since those models have the highest MAE and RMSE score. In contrast, the 

model other than those two is not significantly different because the difference between 

these models is in the fraction of 0.07 to 0.26 km/h. From this assessment, KNN is the 

best model according to the MAE score alone. However, if the results from Table 10 are 

considered, the KNN model was overfitted as the model score on the training data is 

way higher than the test score. Therefore, the NN model is the best, followed by DT, 

RF, and GB models.  

4.1.2 Eight Consecutive Times on Random Dates 

Two sets of data were selected, one is on 16th February (weekday), and the other is on 

22nd February (weekend). The selected data were two hours long, which eventually con-

tained eight-step (eight consecutive times). These periods were selected to represent the 

activity of people and stores. It means the selected periods will represent the street when 

the activity is high and when a good prediction might be necessary. This selection idea 

was based on [9]; however, the selected date differed. The following Figure 16 and Fig-

ure 17 show the comparison between each model in each selected period.  

 

Figure 16: Result comparison between the actual and predicted value for each model on 16th 

February from 11:00 to 13:00 
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Figure 17: Result comparison between the actual and predicted value for each model on 22nd 

February from 19:00 to 21:00 

From Figure 16, it appears that both linear models (LR and SVR linear) can predict 

the actual value. However, Figure 17 shows the other way around, where the model 

could predict the first and the following values before the last point. This trend can also 

be seen in Figure 16, where these models could have a decent prediction initially and 

fail afterward. Therefore we can assume that these models are not consistent and suita-

ble for traffic prediction problems. Additionally, the overall results for the other models 

can be identified through the overall MAE and RMSE scores in Table 16. 

Table 12 Overall MAE and RMSE values for each model from two tests  

 Scenario LR KNN NN 
SVR 

(Linear) 
SVR 

(RBF) 
DT RF GB 

M
A

E
 16th February 3.03 3.05 3.04 2.72 2.71 2.80 2.62 2.38 

22nd February 2.18 1.65 1.17 2.30 1.05 1.80 1.40 1.62 

R
M

S
E

 

16th February 3.80 3.66 3.70 3.51 3.40 3.22 3.36 3.15 

22nd February 2.82 1.97 1.45 3.11 1.45 2.30 1.55 1.72 

 

Through Table 12, the other ML model, except the linear model, performs very well 

and consistently when the previous scenario is considered. However, consider that the 

KNN model was overfitted during this assessment. Therefore, the validity of the result 

from it is still questionable. The table also shows that the models that perform better 

among the good models are the tree models (DT and RF) and the GB model. 
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4.1.3 24 Hours Time Window on Random Dates 

The assessment for this scenario was conducted on two random dates. The first test was 

selected on the 24th of February, while the second test data was on the 28th of February. 

The following Figure 18 and Figure 19 show the results of these two tests, respectively.  

 

Figure 18: Prediction result comparison between each model and the actual value on the 24th of 

February 

 

Figure 19: Prediction result comparison between each model and the actual value on the 28th of 

February 

Note that the results for this scenario and the scenario for eight consecutive periods 

were made through simultaneous prediction, meaning that the prediction was not per-

formed iteratively through each row of the test data frame. In contrast, the previous 

study by [9] performs the prediction iteratively per step (15 minutes). This study did not 

follow this since it will cause performance issues when more extensive datasets, i.e., 

more than 1000 rows, are predicted [41].  

Again, from Figure 18 and Figure 19, the linear model does not work well as those 

models predict a complex problem with linear approaches. However, the other models 

other than those two perform very well by following the trend of the actual value. 
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Moreover, KNN and NN models can outperform SVR, GB, DT, and RF, as from those 

figures, both models can predict closer to the actual value. Therefore, to better under-

stand how well these models predict the value, both MAE and RMSE values should be 

considered. The following Table 13 shows the MAE and RMSE values from each mod-

el. 

Table 13 Overall MAE, RMSE, and R2 score values for each model from two tests on 24 hours 

prediction scenario 

 Scenario LR KNN NN 
SVR 

(Linear) 
SVR 

(RBF) 
DT RF GB 

M
A

E
 24th February 5.14 4.91 4.92 5.13 4.84 4.75 4.38 4.67 

28th February 5.04 3.47 3.35 5.02 3.86 3.45 3.43 3.47 

R
M

S
E

 

24th February 6.58 6.12 5.85 6.55 5.74 5.81 5.17 5.61 

28th February 6.41 4.95 4.47 6.40 4.89 4.46 4.38 4.48 

R
2
 

S
c
o
re

 

24th February 0.10 0.22 0.29 0.11 0.32 0.30 0.44 0.35 

28th February 0.29 0.57 0.67 0.29 0.59 0.65 0.67 0.65 

 

From Table 13, in contrast to the visual analysis of previous figures, both KNN and 

NN were outperformed by SVR, tree models, and GB models. According to MAE, 

RMSE, and R2 score values, the best model is the RF model, followed by the GB mod-

el. Moreover, assuming the R2 score can detect the quality of the input data, the data on 

24th February is considered to have bad quality. Therefore, by looking at MAE and 

RMSE behavior on the good models, NN can perform better than the other models 

when the data quality is good. On the other hand, the other models, except KNN, have a 

pretty stable performance regardless of the quality of the input.  

4.2 Assessment for Network-Wide Analysis  

After assessing the model, several scenarios were tested to study the effect of bus stop 

features and find the best scenario for predicting the whole city road network. The sce-

narios are as follows: 

1. One month of data with only one random road segment,  

2. One month of data with multiple road segments analyze at once,  

3. Multiple months of data with only one random road segment, and 

4. Multiple months of data with multiple road segments analyze at once.  
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These scenarios were applied to both Tsimiski and Egnatia street. Figure 20 shows 

the speed values on each street from 2018 until 2022.  

 

Figure 20: Speed value in Tsimiski Street (top) and Egnatia Street (bottom) from January 2018 

to March 2022 

Respectively, each dataset has a total of 390,922 and 907,021 records. From those 

records, the data were sliced according to the scenario needed. The number of selected 

road segments caused the difference in the number of records between these two da-

tasets. On Egnatia data, seven road segments out of 19 were selected. On the other hand, 

from Figure 20, it is shown that there are only three segments selected on Tsimiski 

street. The reason is that several road segments do not have speed data, as already men-

tioned in section 3.3.3. This problem might affect the following process and be further 

discussed in section 5.2.  

4.2.1 One Month Data – One Road Segments 

This scenario aims to become a benchmark comparison for the result when multiple 

segments are selected. Figure 21 below shows the speed trend on each segment from 

each road in one month.  
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Figure 21: Speed profile of road segment 176665186 on Tsimiski street (top) Speed profile of 

road segment 35355049 on Egnatia street (bottom) 

Daily speed patterns are depicted in those figures, so the related features will be in-

cluded when creating the model. Moreover, a heatmap correlation was created for each 

road to determine the correlation between features and target features, as shown in Fig-

ure 22.  

 

Figure 22: Tsimiski’s data (left) and Egnatia’s data (right) feature correlation for the first sce-

nario 
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There were about 14 features from the actual data, as mentioned in section 3.3.3. 

Nevertheless, most of the features were dropped as several features in this scenario only 

have one unique value. Moreover, Figure 22 shows that both ‘hours’ and ‘stores’ fea-

tures correlate enough to the speed value, while ‘mins’ and ‘n_day’ features have a very 

low correlation toward the speed value.  However, these two features were not dropped 

as it will make the prediction process more challenging.  

After selecting the target and input features, the train-test-split process was applied 

to the input feature. The training and test data's hourly trend is presented in Figure 23.  

 

Figure 23: Hourly trend of training and test data on Tsimiski Street (top) and Egnatia Street 

(bottom) 

Those figures show that the speed reaches its free-flow speed on each road segment 

around 05:00 to 06:00 before the road starts congested. The roads become free again 

from around 13:00 to 17:00 before congestion begins. The figure also shows sufficient 

samples for training and test sets for each time step. Moreover, several ML models were 

applied to the data after selecting the training and test data. Table 14 presents the pre-

diction performance of this scenario.  
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Table 14 Prediction performance on the selected data on both streets in January 2018  

 Scenario LR KNN NN 
SVR 

(Linear) 
SVR 

(RBF) 
DT RF GB 

M
A

E
 Tsimiski Street 6.26 4.65 5.58 6.22 4.99 4.96 4.68 4.06 

Egnatia Street 5.19 5.50 5.05 5.19 4.80 6.08 5.73 4.71 

R
M

S
E

 

Tsimiski Street 7.89 6.27 7.15 7.92 6.50 6.97 6.50 5.46 

Egnatia Street 6.81 7.30 6.74 6.82 6.51 8.20 7.65 6.32 

R
2
 S

c
o
re

 

Tsimiski Street 
(Test Data) 

0.29 0.55 0.42 0.28 0.52 0.44 0.52 0.66 

Tsimiski Street 
(Training Data) 

0.30 0.70 0.42 0.29 0.52 0.76 0.76 0.67 

Egnatia Street 
(Test Data) 

0.12 -0.01 0.13 0.12 0.20 -0.27 -0.11 0.24 

Egnatia Street 
(Training Data) 

0.13 0.39 0.16 0.13 0.20 0.49 0.48 0.27 

 

Result Optimization on the First Scenario 

From the preceding result in this scenario, model optimization must be applied to im-

prove each model’s performance. Those models were improved by tweaking their hy-

perparameters until each model reached the optimal model score. The idea of this hy-

perparameter tweaking is to adjust the model so the model will be less complex and 

avoid overfitting. Thus, the following codes in Appendix C are the final tuning of its 

hyperparameters for this scenario. After these settings were applied to the model, the 

performance of each model was improved, as shown in Table 15.  

Table 15 Optimized prediction performance on the first scenario 

 Scenario LR KNN NN 
SVR 

(Linear) 
SVR 

(RBF) 
DT RF GB 

M
A

E
 Tsimiski Street 6.26 4.61 4.28 6.24 4.29 4.13 4.15 4.06 

Egnatia Street 5.19 5.38 4.76 5.19 4.72 4.71 4.70 4.71 

R
M

S
E

 

Tsimiski Street 7.89 6.17 5.72 7.89 5.69 5.63 5.56 5.45 

Egnatia Street 6.81 7.20 6.40 6.81 6.46 6.33 6.35 6.32 

R
2
 S

c
o
re

 

Tsimiski Street 
(Test Data) 

0.29 0.56 0.63 0.29 0.63 0.64 0.66 0.66 

Tsimiski Street 
(Training Data) 

0.30 0.71 0.69 0.30 0.65 0.66 0.67 0.67 

Egnatia Street 
(Test Data) 

0.12 0.02 0.22 0.12 0.21 0.24 0.24 0.24 

Egnatia Street 
(Training Data) 

0.13 0.39 0.24 0.13 0.24 0.24 0.26 0.28 
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By comparing the results from Table 14 and Table 15, it can be concluded that the 

GB model can produce the best model without tuning its hyperparameter. In contrast, 

the other model should be tuned to reach the score achieved by the GB model without 

hyperparameter tuning. Therefore, the most accurate model must be selected if this sce-

nario is deployed. Therefore, Figure 24 below shows the actual and predicted values’ 

hourly and daily comparison results on Tsimiski street, while Figure 25 and Figure 26 

are the results on Egnatia street.  

 

Figure 24: Daily comparison (top) and hourly comparison (bottom) between the actual and pre-

dicted value on Tsimiski street 

 

Figure 25: Daily comparison between the actual and predicted value on Egnatia street 
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Figure 26: Hourly comparison between the actual and predicted value on Egnatia street 

4.2.2 One Month Data – Multiple Road Segments 

This scenario assesses the prediction performance when multiple road segments are se-

lected. The following Figure 27 shows the data selected for this scenario.  

 

Figure 27: The selected data on Tsimiski Street (top) and Egnatia Street (bottom) for the second 

scenario 

The idea of this scenario is that traffic speed prediction on each segment can be per-

formed faster if the process can be performed for the whole network-wide simultane-

ously. The process will be faster than predicting each segment one at a time. Therefore, 
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the viability of this scenario could be assessed, and the factor that reduces prediction 

accuracy can be investigated. This scenario also tries to assess the prediction results 

when new features such as the road length and bus stop are added as input features. Fig-

ure 28 shows the feature correlation between the speed value and input features.  

 

Figure 28: Tsimiski’s data (left) and Egnatia’s data (right) feature correlation for the second 

scenario 

 

Figure 29: Hourly trend of training and test data on Tsimiski Street (top) and Egnatia Street 

(bottom) for each road segment 
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From Figure 28, road length and bus stop positively correlate with the speed value, 

while hours and store features negatively correlate with the speed value. On the other 

hand, the ‘mins’ and ‘n_day’ features have a little correlation with the target value. 

However, these features were still included as the input since only a few input features 

were in the dataset. Moreover, the training and test dataset was then selected after inves-

tigating the correlation between the target and input features, which the selected data is 

shown in Figure 29. 

The selected data were then trained and tested on eight ML models similar to the 

previous scenario. The model performance can be seen in Table 16.  

Table 16 Prediction performance on the selected data on both streets in the year 2018 on the 

second scenario 

 Scenario LR KNN NN 
SVR 

(Linear) 
SVR 

(RBF) 
DT RF GB 

M
A

E
 Tsimiski Street 6.34 5.47 5.34 6.34 5.42 6.10 5.78 5.13 

Egnatia Street 6.49 6.38 5.98 6.48 6.06 7.01 6.63 5.87 

R
M

S
E

 

Tsimiski Street 8.13 7.32 7.02 8.14 7.16 8.23 7.75 6.83 

Egnatia Street 8.59 8.56 8.05 8.60 8.16 9.47 8.91 7.93 

R
2
 S

c
o
re

 

Tsimiski Street 
(Test Data) 

0.06 0.24 0.30 0.06 0.27 0.04 0.15 0.34 

Tsimiski Street 
(Training Data) 

0.07 0.52 0.34 0.06 0.30 0.60 0.59 0.39 

Egnatia Street 
(Test Data) 

0.20 0.21 0.30 0.20 0.28 0.03 0.14 0.32 

Egnatia Street 
(Training Data) 

0.20 0.47 0.31 0.20 0.29 0.59 0.57 0.33 

 

Compared to the previous scenario, the very distinct change is the value of the R2 

score, where on Egnatia Street, the value was increased, and in contrast, on Tsimiski 

Street, the value was decreased. The reduction on Tsimiski Street might be related to 

Figure 29, where the hourly trend is quite different between one segment and another, 

even though the selected train and test data represent each segment. It is shown in the 

figure where the segment with id 174019380 and 13769164 have different speed trends 

in the morning compared to the road segment that was analyzed in the preceding scenar-

io. Therefore, it may be because of the data quality issue, which will reduce the overall 

R2 value. However, looking at the value of R2 on Egnatia Street may indicate that pre-

dicting multiple segments is viable, and adding more features for the training will in-

crease the R2 score value as long as the quality of the data input is reliable.  
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Aside from the change in the R2 value, according to Table 16, the NN and GB mod-

els outperform the other models by having lower error (MAE and RMSE) values and 

higher R2 scores. Note that these models can achieve this result without hyperparameter 

tuning. However, by comparing Table 15 and Table 16, this scenario does not perform 

better than the previous one as the error values increase.  

Result Optimization on the Second Scenario 

These models were optimized to see whether there would be any significant improve-

ment if proper hyperparameters were set. Table 17 shows the optimized results from 

each model in this scenario. 

Table 17 Optimized prediction performance on the second scenario  

 Scenario LR KNN NN 
SVR 

(Linear) 
SVR 

(RBF) 
DT RF GB 

M
A

E
 Tsimiski Street 6.35 5.53 5.13 6.33 5.16 5.16 5.21 5.13 

Egnatia Street 6.49 6.42 5.91 6.49 5.97 6.01 6.05 5.87 

R
M

S
E

 

Tsimiski Street 8.14 7.37 6.86 8.12 6.88 6.87 6.89 6.83 

Egnatia Street 8.59 8.58 7.98 8.60 8.08 8.09 8.13 7.93 

R
2
 S

c
o
re

 

Tsimiski Street 
(Test Data) 

0.06 0.23 0.33 0.06 0.33 0.33 0.33 0.34 

Tsimiski Street 
(Training Data) 

0.07 0.51 0.43 0.06 0.40 0.39 0.37 0.39 

Egnatia Street 
(Test Data) 

0.20 0.20 0.31 0.20 0.29 0.29 0.28 0.32 

Egnatia Street 
(Training Data) 

0.20 0.47 0.32 0.20 0.34 0.30 0.29 0.33 

 

By looking at Table 16 and Table 17, the GB model achieved optimal results with-

out hyperparameter tuning. At the same time, the NN model improved insignificantly 

after hyperparameter tuning. The SVR (RBF) and the tree models (DT and RF) also im-

proved after tuning their hyperparameters. Both tree models do not have overfitted 

models, as presented in the previous table. However, these results cannot be improved if 

hyperparameter tuning is not implemented. Moreover, tuning hyperparameters will be 

challenging if many road segments are being predicted.  

To study the behavior of the prediction model, the GB model, as assumed as the best 

model for this scenario, was selected. The following Figure 30, Figure 31, and Figure 

32 show the prediction behavior of the GB model both on Tsimiski and Egnatia street. 
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Figure 30: Daily comparison (top) and hourly comparison (bottom) between the actual and pre-

dicted value on Tsimiski street for the second scenario 

From Figure 30 above, the model has trouble predicting the value as it ‘stretched’ by 

the segments with the inconsistent trend. This effect can be seen in the hourly trend fig-

ure, where the speed prediction from hour four until seven was trying to balance the in-

put trend, as depicted in Figure 29. Moreover, according to the daily trend figure, the 

model can predict the result very well after step 6000 (day 21st), which may be because 

the problem segments have had decent data quality since then.  

 

Figure 31: Daily comparison between the actual and predicted value on Egnatia street for the 

second scenario 
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Figure 32: Hourly comparison between the actual and predicted value on Egnatia street for the 

second scenario 

From both Figure 31 and Figure 32, the GB model does not have any trouble pre-

dicting the speed value as it shows that the prediction result is consistent, whether daily 

or hourly. However, even though it is consistent, the data input quality for Egnatia street 

is unreliable, which results in a low score value. Moreover, a prediction using the GB 

model with and without additional features was performed to see how the road length 

and bus stop features affect the prediction result. Table 18 shows the comparison results 

of this experiment—C1 shows where both features are included, while C2 shows where 

those features are excluded. This result shows that adding these features does not signif-

icantly affect the model performance.  

Table 18 Prediction comparison for road length and bus stop features using the GB model 

 Tsimiski St. Egnatia St. 

Metric C1 C2 C1 C2 

R2 Score 0.34 0.33 0.32 0.32 

MAE 5.13 5.15 5.87 5.88 

RMSE 6.83 6.84 7.93 7.93 

4.2.3 Multiple Month Data – One Road Segments 

The idea of this scenario is to study the behavior of the analysis when one road segment 

is analyzed with multiple months included. With multiple months included, more fea-

tures will be included; in this case, the month column would be the additional feature. 

Also, adding multiple months in one or even from different years would add more traf-

fic patterns to be learned by each model. Figure 33 shows the correlation between each 

feature and the target feature for this scenario.  
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Figure 33: Tsimiski’s data (left) and Egnatia’s data (right) feature correlation for the third sce-

nario 

From Figure 33, both ‘hours’ and ‘stores’ correlate relatively similar to the speed 

feature experienced in the first scenario. At the same time, the rest features were still 

added, so the models have some more features to learn to create a better model. Moreo-

ver, after selecting the target and input features, the dataset was split into training and 

test datasets shown in Figure 34.  

 

Figure 34: Hourly trend comparison between the selected training and test data on Tsimiski 

(Top) and Egnatia (bottom) street 
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 The same trend with the first scenario is shown in both figures above. The traffic 

will reach its peak speed in the morning before it starts congesting. Then again, it will 

reach the maximum speed in the afternoon before it starts congesting in the evening. 

After this process, training and test datasets were fed to the model, and Table 19 shows 

the prediction result.  

Table 19 Prediction performance on the selected data on both streets in the year 2018 on the 

third scenario 

 Scenario LR KNN NN 
SVR 

(Linear) 
SVR 

(RBF) 
DT RF GB 

M
A

E
 Tsimiski Street 6.28 3.97 4.32 4.66 4.66 4.38 4.13 4.09 

Egnatia Street 5.29 4.51 4.42 4.48 4.48 5.04 4.77 4.24 

R
M

S
E

 

Tsimiski Street 7.83 5.43 5.61 7.87 6.16 6.08 5.71 5.35 

Egnatia Street 6.79 6.09 5.84 6.79 5.96 6.82 6.42 5.67 

R
2
 S

c
o
re

 

Tsimiski Street 
(Test Data) 

0.20 0.61 0.59 0.19 0.50 0.52 0.57 0.62 

Tsimiski Street 
(Training Data) 

0.22 0.74 0.60 0.21 0.52 0.79 0.79 0.63 

Egnatia Street 
(Test Data) 

0.20 0.35 0.40 0.20 0.38 0.19 0.28 0.44 

Egnatia Street 
(Training Data) 

0.20 0.56 0.41 0.20 0.38 0.64 0.64 0.44 

 

Compared to the first scenario on Egnatia street, the result for this scenario is rela-

tively better. In this scenario, the R2 score on this street reaches up to 40%, whereas in 

the first scenario, it can only reach 25%. However, there is no change in the result on 

Tsimiski street, as it has a constant R2 score of around 60% in both scenarios. The same 

goes for the MAE and RMSE value, where the error difference in both scenarios reach 

up to 0.4 km/h, with this scenario performing better than the first scenario. The result of 

this scenario might be affected by the additional data added from other months, which 

gives Egnatia data that was assumed to have insufficient quality data in January some 

more patterns to learn and improve the performance.  

Result Optimization on Third Scenario 

In this scenario, from Table 19 alone, we can already conclude that the GB model is still 

performing relatively better than any other model even when hyperparameter tuning 

was not applied to the model yet. Again with the tuned hyperparameter shown in Ap-

pendix C, the performance of each model can be improved, and the result of this opti-

mization can be seen in Table 20.  
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Table 20 Optimized prediction performance on the third scenario 

 Scenario LR KNN NN 
SVR 

(Linear) 
SVR 

(RBF) 
DT RF GB 

M
A

E
 Tsimiski Street 6.28 3.99 3.94 6.27 4.22 4.22 4.41 4.08 

Egnatia Street 5.29 4.53 4.26 5.30 4.56 4.56 4.49 4.24 

R
M

S
E

 

Tsimiski Street 7.83 5.45 5.24 7.83 5.30 5.61 5.71 5.35 

Egnatia Street 6.79 6.11 5.71 6.78 5.73 6.00 5.91 5.67 

R
2
 S

c
o
re

 

Tsimiski Street 
(Test Data) 

0.20 0.61 0.64 0.19 0.63 0.59 0.57 0.63 

Tsimiski Street 
(Training Data) 

0.22 0.74 0.66 0.21 0.65 0.60 0.59 0.63 

Egnatia Street 
(Test Data) 

0.20 0.35 0.43 0.20 0.43 0.37 0.39 0.44 

Egnatia Street 
(Training Data) 

0.20 0.56 0.45 0.20 0.45 0.38 0.40 0.45 

 

From the table above, both GB and NN models perform better than the other mod-

els. Additionally, from the MAE result, KNN performs on par with those two models, 

but the R2 value for the KNN model should also be considered. It overfitted the training 

data even though the model hyperparameters were already tweaked to get the best re-

sults. Therefore, the acceptable R2 value should be defined if this model is selected for 

deployment. Aside from this, the GB model should be selected to analyze the result fur-

ther, considering it is also the best model in this scenario. Respectively, Figure 35 and 

Figure 36 below show the average hourly comparison between the actual and the pre-

dicted value on Tsimiski street and Egnatia street.  

 

Figure 35: Hourly comparison between the average actual and predicted value on Tsimiski 

street for the third scenario 
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Figure 36: Hourly comparison between the average actual and predicted value on Egnatia street 

for the third scenario 

Moreover, additional processing was conducted to test how the multiple-year data 

affected the prediction result, shown in Table 21. Only GB results are compared for 

these experiments because it represents the best model for this scenario. 

Table 21 Multiple-year comparison results using the GB model 

 Tsimiski St. Egnatia St. 

Metric 1 Y 2 Y 3 Y 4 Y 1 Y 2 Y 3 Y 4 Y 

R2 Score 0.62 0.60 0.54 0.56 0.44 0.40 0.36 0.37 

MAE 4.09 4.37 5.01 5.24 4.24 4.55 5.12 5.16 

RMSE 5.36 5.73 6.68 7.01 5.67 6.09 6.90 6.97 

 

Additionally, Table 22 compares the prediction results between years to see how 

consistent the prediction is for each year.  

Table 22 Each year’s comparison results using the GB model 

 Tsimiski St. Egnatia St. 

Metric 2018 2019 2020 2021 2018 2019 2020 2021 

R2 Score 0.62 0.60 0.52 0.61 0.44 0.38 0.29 0.40 

MAE 4.09 4.47 5.48 5.22 4.24 4.80 5.93 4.96 

RMSE 5.36 5.95 7.53 7.14 5.67 6.39 8.03 6.80 

 

From both tables above, we can conclude that adding more years might increase or 

decrease the model’s performance. In this case, both selected streets are experiencing a 

change in the year 2020. This change is most likely due to COVID-19 that happened 

throughout that year. Therefore, while predicting the speed, the overall score will be re-

duced by the score in 2020.  
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4.2.4 Multiple Month Data – Multiple Road Segments 

This scenario aims to test the model's capabilities if the second scenario has an accepta-

ble result. Therefore, adding more patterns from other months might improve the pre-

diction result. Figure 37 below shows the correlation between the speed value, which 

acts as the target value, and the input features in this study.  

 

Figure 37: Tsimiski’s data (left) and Egnatia’s data (right) feature correlation for the fourth sce-

nario 

Similar to the second scenario in 4.2.2, the additional input features, i.e., the bus 

stop and road length, positively correlate to the target feature. At the same time, the oth-

er input features other than those two features act similarly as in other scenarios. After 

checking the correlation between target and input features, the training and test set were 

selected, as seen in the following Figure 38 and Figure 39.  

 

Figure 38: Hourly trend of training and test data on Tsimiski Street for each road segment 

Figure 38 above shows a different pattern between each segment, which indicates 

the actual behavior in that road, or both segments 174019380 and 13769164 have bad 
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quality data recording. In contrast, Figure 39 shows that the Egnatia dataset segments 

have similar hourly average speed patterns.  

 

Figure 39: Hourly trend of training and test data on Egnatia Street for each road segment 

After the training and test data had been selected, the data were then fed to the ML 

models. For this scenario, the total records for the Tsimiski and Egnatia input data are 

105,117 and 241,764. These numbers differ because the total selected segments are dif-

ferent between these roads. Therefore, it makes the training and test process for Egnatia 

data more challenging when using the SVR (RBF) model, as seen in Table 23.  

Table 23 Prediction performance on the selected data on both streets in the year 2018 on the 

third scenario 

 Scenario LR KNN NN 
SVR 

(Linear) 
SVR 

(RBF) 
DT RF GB 

M
A

E
 Tsimiski Street 6.53 5.15 5.11 6.51 5.35 5.66 5.36 5.27 

Egnatia Street 6.34 5.72 5.52 6.33 - 6.38 5.99 5.58 

R
M

S
E

 

Tsimiski Street 8,32 7.08 6.84 8.33 7.16 7.82 7.39 6.95 

Egnatia Street 8.17 7.74 7.34 8.18 - 8.70 8.12 7.38 

R
2
 S

c
o
re

 

Tsimiski Street 
(Test Data) 

0.08 0.34 0.38 0.08 0.32 0.19 0.28 0.36 

Tsimiski Street 
(Training Data) 

0.09 0.55 0.39 0.09 0.32 0.64 0.63 0.36 

Egnatia Street 
(Test Data) 

0.15 0.24 0.31 0.15 - 0.04 0.16 0.31 

Egnatia Street 
(Training Data) 

0.14 0.49 0.32 0.15 - 0.60 0.59 0.31 

 

 As discussed in section 2.2.3, the SVR may require more memory and computation 

power to process a dataset with more than 100,000 records. Therefore, with the total 

record that Egnatia street has, SVR using the RBF kernel cannot be accomplished since 
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it needs much time to compute. Aside from this matter, for this scenario, both the NN 

and GB is still the best model. These models can achieve the optimal score without the 

need for hyperparameter tweaking.  

Result Optimization on Fourth Scenario 

In order to compare the model at the best performance, hyperparameter tuning was done 

to all models until each model reached its maximum result. Table 24 shows the opti-

mized performance of each model except the SVR (RBF) model. From the table, even 

after hyperparameter tweaking, the NN and GB are still the best models among all ML 

models used in this study.  

Table 24 Optimized prediction performance on the third scenario 

 Scenario LR KNN NN 
SVR 

(Linear) 
SVR 

(RBF) 
DT RF GB 

M
A

E
 Tsimiski Street 6.53 5.15 5.08 6.52 5.09 5.29 5.37 5.27 

Egnatia Street 6.34 5.72 5.40 6.34 - 5.87 5.79 5.58 

R
M

S
E

 

Tsimiski Street 8.32 7.07 6.80 8.32 6.80 7.03 7.06 6.95 

Egnatia Street 8.17 7.75 7.24 8.17 - 7.67 7.58 7.38 

R
2
 S

c
o
re

 

Tsimiski Street 
(Test Data) 

0.08 0.34 0.39 0.08 0.39 0.35 0.34 0.36 

Tsimiski Street 
(Training Data) 

0.09 0.55 0.40 0.09 0.40 0.35 0.34 0.36 

Egnatia Street 
(Test Data) 

0.15 0.24 0.33 0.15 - 0.25 0.27 0.31 

Egnatia Street 
(Training Data) 

0.15 0.49 0.35 0.15 - 0.26 0.27 0.31 

 

Moreover, additional processing was conducted to test how the multiple-year data 

affected the prediction result. This test result can be seen in the following Table 25. 

Similar to the experiment in Table 21 and Table 22, only GB results are compared for 

these experiments because it represents the best model for this scenario. 

Table 25 Multiple-year comparison results using the GB model 

 Tsimiski St. Egnatia St. 

Metric 1 Y 2 Y 3 Y 4 Y 1 Y 2 Y 3 Y 4 Y 

R2 Score 0.36 0.35 0.36 0.36 0.31 0.31 0.30 0.31 

MAE 5.27 5.52 6.30 6.66 5.58 5.93 6.51 6.62 

RMSE 6.95 7.28 8.39 8.84 7.38 7.79 8.59 8.73 
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Table 26 compares the prediction results between years to see the prediction con-

sistency. When the result between Table 22 and the following table, the result between 

years seems to be consistent. It may indicate that the previous result was not affected by 

the fact that COVID-19 happened in 2020, or probably as for this scenario, multiple 

segments are analyzed, which makes the effect of an event such as COVID-19 not dis-

tinctly appears in the result.  

Table 26 Each year’s comparison results using the GB model 

 Tsimiski St. Egnatia St. 

Metric 2018 2019 2020 2021 2018 2019 2020 2021 

R2 Score 0.36 0.36 0.37 0.46 0.31 0.30 0.30 0.38 

MAE 5.27 5.66 7.30 6.51 5.58 6.15 7.30 6.60 

RMSE 6.95 7.44 9.74 8.75 7.38 8.08 9.61 8.78 
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5 Discussion 

This section will discuss the results from the previous section, followed by the viability 

of performing network-wide prediction. The results from section 4.1 will be compared 

with those from the previous study as the benchmark. After discussing the prediction 

performance, the results from section 4.2 will be used for city-wide network prediction.  

5.1 Prediction Performance 

The discussion for the prediction outcomes will use [9] results as a benchmark. The 

same dataset was used in their study: Thessaloniki’s FCD data from the same source. It 

was five months of traffic data in 2019, containing features such as minimum, maxi-

mum, standard deviation, mean skewness, and kurtosis of speed at the 15 minutes time 

window, the date and time, the road entries, and the unique entries. These features were 

used as the training input to several algorithms: RF, SVR, NN, and LR models. There-

fore, the models were trained using the data from the previous two weeks to the desired 

date-time and assessed using 10-fold cross-validation techniques [9].  

Several scenarios were applied to the experiments. The scenarios are the speed pre-

diction at random dates and times, the speed prediction at eight consecutive dates and 

times, and for a specific 24-hour time window; all these scenarios were applied on ran-

domly selected roads. Therefore, these were expected to analyze the algorithms’ fore-

casting abilities [9]. In section 4.1, these scenarios were recreated to test model perfor-

mance in this study when different input features were used. The result and the compar-

ison between the current and previous studies can be seen in the following Figure 40 

and Figure 41.  

 

Figure 40: MAE comparison between the current and previous studies on the first and third sce-

narios 
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Figure 41: RMSE comparison between the current and previous studies on the second and third 

scenarios 

 From all the figures above, it also can be concluded that the linear models (LR and 

SVR linear) have the worst performance among the other ML models. Therefore, for 

further discussion, these ML models will be excluded. It is aligned with what was al-

ready mentioned in section 2.4; the linear model is insufficient to predict the traffic 

speed because it is a complex phenomenon that might get disturbed by typical and atyp-

ical conditions such as accidents and extreme weather. However, the result from section 

4.1.2 might imply that the linear model can be used when the prediction is for more than 

one time step but no more than eight time steps, as the prediction performance is poor 

when the 24 hours scenario was applied for these linear models. 

Overall, from Figure 40, the results have outperformed the preceding study on the 

first scenario. Additionally, this study found more ML models that can perform on par 

with SVR, NN, and RF models. Furthermore, throughout all the figures, the ML models 

that perform very well in this study are the NN, GB, RF, DT, SVR (RBF), and KNN. 

For the third scenario, the MAE is quite varied, where a sample in this study can per-

form very poorly, but there is also a sample that performs exceptionally well compared 

to all the tests. Therefore, the RMSE from Figure 41 should also be considered to ana-

lyze the results for the third scenario. The results from the current study have a relative-

ly small difference between MAE and RMSE values, which means that the individual 

error from this study has a smaller variance than the previous study. Moreover, in Fig-

ure 41, the second scenario also has a similar problem where the RMSE results are var-

ied. Nevertheless, as the previous study did not calculate the MAE for the second sce-

nario, the results for the second scenario can not be deeply analyzed.  

In the first scenario, as mentioned in 4.1.1, the KNN model top the performance, 

followed by NN, SVR, trees, and GB models with a fraction less than 0.5 km/h differ-

ence. It also has the lowest maximum error, which is capped at 5 km/h, while on the 
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other hand, the linear models have a maximum RMSE of around 7 km/h. However, the 

R2 score for the KNN model should be considered because even though hyperparameter 

tuning is already applied to the model, the resulting model still overfits the training data, 

making the result from this model seem unreliable. Looking at Figure 15, the NN model 

performs very well when predicting the speed at random times, as the median is closer 

to the lower quartile of RMSE results. Nevertheless, if the lower maximum error is con-

sidered, the SVR (RBF), RF, and GB models can be selected as the best model for this 

scenario. Aside from the maximum error from these models, the distributions of RMSE 

for each model are gathered around the lowest error, and the box size shows that the RF 

model precisely predicts the speed, followed by GB and SVR (RBF) model. 

When predicting multiple times, such as in the second and third scenarios, the over-

all MAE and RMSE will become more significant. Because, during the period of data 

being predicted, the prediction error will be more varied. This study did not perform the 

prediction in a loop to predict for each timestep. Instead, it will simultaneously predict 

the whole data input for prediction. It was done to avoid performance issues when pre-

dicting the speed value for a more extended period, as mentioned in section 4.1.3. 

Moreover, the next section will discuss which model is more suitable and efficient for a 

more extended period of city-wide prediction.  

5.2 Network-Wide Prediction 

The network-wide traffic speed prediction is needed for route planning and traffic inter-

vention in advance to improve traffic efficiency. Therefore, the development of ITS will 

be supported by being able to predict the traffic speed at the macro-level accurately and 

efficiently. For this study, the network-wide prediction is still in the phase of concept, 

which will be discussed using the results from section 4.2. Traditional ML algorithms 

are used in this study because the preparation of input data for more sophisticated mod-

els is quite complex and time-consuming. Thus, using the traditional model is expected 

to give a lot more simple approaches and less time-consuming process, but could give a 

good result with acceptable performance.  

 According to section 4.2, several ML models can be picked when the most efficient 

scenario is selected for deployment. Overall, the models that perform very well are 

similar to the results from the previous section: the NN, GB, trees, and SVR (RBF). For 

most scenarios, linear models show the sign that traffic speed prediction is a complex 
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problem that cannot be approached using a linear model. While on the other hand, the 

KNN model experience overfitting, which was challenging to tune the hyperparameters. 

Therefore, only those five models are still in consideration. However, from this study, 

after comparing these models in four different scenarios, it is found that the GB might 

be the most suitable model to be picked in any scenario that will be selected. This ML 

reaches optimum results from all the scenarios without hyperparameter tuning. In com-

parison, the rest of the models need to be tweaked to reach or slightly surpass the result 

of the GB model.  

 Moreover, when comparing NN and GB models, in terms of training and prediction 

time, GB models could work much faster than NN, especially when the input data have 

many records. The statement in section 2.2.7 supports it; NN (for this study, MLP algo-

rithm is used) takes a long time to train and requires careful data preprocessing. It also 

needs hyperparameter tuning, such as its hidden neurons, the layers, and the number of 

iterations. On the other hand, according to section 2.2.6, the GB model works by creat-

ing shallow trees that lead to a faster processing time.  

In terms of the scenario, only the scenarios that predict one road segment at a time 

are recommended. Even though simultaneously predicting multiple road segments 

might speed up the process, the overall prediction performance might suffer from the 

road segment with low-quality data or a very different pattern. Moreover, analyzing 

multiple road segments one at a time might require much more computational power 

and RAM. Additionally, adding spatial features such as bus stop and road length to the 

input training data do not help improve the result, as seen in section 4.2.2, where there 

is no difference between the result when these features are included and excluded in the 

training process. It is also supported by the fact that through the correlation matrix, even 

though these spatial features correlate to the traffic speed, the correlation is not high 

enough to affect the prediction result.  

If the spatial features want to be added when predicting one road segment, it is sug-

gested to try putting the adjacent road segment and its data as input features. Therefore, 

the effect of adjacent segments on the predicted road segment can be incorporated dur-

ing the model creation. It is because the traffic on one road segment might propagate to 

other segments—this traffic also might be affected by the features that occur on the oth-

er road segments. However, if the spatial features are not considered, the prediction 
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process for a network-wide case can be done through looping for each road segment at a 

time. 

Predicting in a looping fashion for one road segment at a time should be used to ob-

tain network-wide prediction results. Nevertheless, the question is, how much input data 

are needed to predict efficiently. According to the results from the third scenario, adding 

more data might increase or decrease the R2 score. For the case of Egnatia data, adding 

more data to one year improve the overall result compared to the first scenario. In con-

trast, in the Tsimiski case, adding more data will slightly decrease the overall results. 

One thing that has not yet been tried is how far the model can predict the traffic speed 

from the period of the training data.  

Threats to the Validity 

Overall, the method in this study can be applied to another traffic prediction case, as 

long as the data related to the traffic speed is available. The method is flexible with oth-

er datasets because it uses date-time features to derive some information such as hours, 

minutes, days, months, and even the store status. However, when applying the method, 

the appropriate store schedule should be adjusted to the usual working hours in the city 

where this method will be applied.  

Several factors must be considered as they might introduce problems to the results. 

For example, in this study, FCD comes from some taxi fleets passing a road segment, 

and each car's speed will be averaged to obtain the traffic speed in that particular seg-

ment. However, many road segments get their value from only one vehicle. Thus, the 

certainty of the speed value cannot be guaranteed. Also, as the speed value will be 

mapped to each appropriate road segment using an algorithm, there might be an error 

during that process. Therefore, these pieces of information regarding data quality are 

necessary. However, as this study did not cover the processing step of GPS data into 

FCD, a more in-depth study is needed to clarify this.  

Another problem that could arise when predicting the traffic speed on the network-

wide scale is the availability of the data itself. As mentioned in 3.3.3 (see both Figure 11 

and Figure 12), there was a problem regarding the availability of FCD data. Therefore, 

it is further inspected to know the distribution of unavailable FCD data throughout OSM 

data. The following Figure 42 shows the result of the inspection.  
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Figure 42: Road network overlayed with unavailable FCD data  

 From the figure above, the red lines indicate the road segment that does not have 

traffic speed data from the FCD data. Moreover, the number of a road segment that does 

not have the traffic speed data can be seen in Table 27 below.  

Table 27 The number of missing FCD data on each road type 

Road Type Count 

corridor 10 

living_street 384 

motorway 20 

motorway_link 28 

primary 200 

Road Type Count 

primary_link 55 

proposed 134 

residential 3231 

secondary 795 

secondary_link 113 

Road Type Count 

tertiary 758 

tertiary_link 111 

trunk 98 

trunk_link 73 

unclassified 661 

 

From the table above, the road segment that does not have traffic speed data are 

dominated by the residential type road, which is less likely to be populated by taxi car. 

However, the residential road can be excluded from the analysis, as route planning 

should avoid this road type. Nevertheless, the number of unavailable data on the prima-

ry and the other essential road types is pretty high and cannot be ignored. Therefore 

there should be a study to predict the traffic speed in the segments with no data. Fur-

thermore, analyzing network-wide traffic speed should consider the influence of other 

features and adjacent segments because the traffic jam in one segment may propagate to 

other segments. Therefore, the study that uses this data for network-wide prediction will 

become more challenging because of the gap between segments within the data.  
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6 Conclusion and Future Work 

The approach from [3] can give comparable results to the result in [9]. Overall, the re-

sults in this study perform better than the prior study. However, the comparison between 

the current and previous studies was not on the same date and times or the same road. It 

is because the initial study did not give this information; thus, this study tried to imitate 

the scenario as closely as possible to get the result that could be compared. This study 

also processes data simultaneously, while the previous study's results seem to predict 

the speed per time steps. According to the community discussion, processing the data in 

that manner may be time-consuming and need a lot of computational resources.  

 In terms of the best model from this study, the NN, GB, SVR (RBF), and tree mod-

els are strong contenders among the tested ML algorithms. However, the SVR might 

suffer computational power issues when dealing with a dataset with more than 100,000 

records. Meanwhile, tree models (RF and DT) are pretty good models. However, these 

models need hyperparameter tuning to adjust the trees and make it less complex to 

overcome overfitting. Tuning hyperparameters might be a problem when predicting 

speed on a network-wide scale, which requires some automation to find the best param-

eters for each road prediction. Therefore, the NN and GB models are the best among 

those models. Nevertheless, this study will pick the GB model as the best as it works 

faster than NN. As presented in the respective section, it also does not need hyperpa-

rameter tuning, where this model already reaches optimal results without tweaking.  

 Several scenarios were tested to determine the most efficient way to predict the traf-

fic speed on a network-wide scale. From these analyses, deploying the scenario where 

multiple road segments are selected is not recommended as it may reduce the overall 

accuracy of the prediction and drag the prediction accuracy in other road segments. In 

this scenario, the effect of adding spatial features, which are the bus stop and road 

length, were studied. It was found that adding these features was not significantly affect 

the prediction result. Therefore, the most efficient way to predict traffic speed using this 

data is to predict the speed per segment. Adding more months to the input data is rec-

ommended as it may increase the prediction score. However, there is still a need to 
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study the sustainability of the prediction model, as it is still unknown how far the creat-

ed model can predict the traffic speed accurately. 

Future Works 

For future work, it is recommended to perform network-wide prediction using the rec-

ommendation from this study and see how fast and accurate this approach is compared 

to the traffic prediction using DL algorithms as performed in [8] or other similar studies. 

To extend the usability of network-wide prediction, the effect of route planning using 

historical and predicted data can be compared to see whether it is feasible to use traffic 

speed prediction results for route planning.  

 Additionally, some experiments mentioned in the discussion may become the future 

works from this study. One example is performing one road segment prediction while 

adding adjacent roads as input features to see whether the prediction performance might 

improve or not. Alternatively, using small time steps on different days for years as the 

input features to predict that particular time step might be interesting to be tested. The 

other possibility of future work might be performing prediction on the road segment 

with no speed data based on adjacent road segment might be useful to improve the ca-

pability of open data that does not always have good quality. Moreover, adding weather 

in the input features may also be the future work from this study. Furthermore, analyz-

ing whether the method in this study is sensitive to typical or atypical conditions can 

also be the other expansion of this study. 
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Appendix A 

Below is the python code to convert FCD text files into the PostgreSQL database.  

import pandas as pd 
import glob 
from sqlalchemy import create_engine 
 
# Importing and merging the files 
data_path = glob.glob('C:/Users/Widiatmoko Azis F/Documents/_WAF Docs/SMACCs 
Study/SMACCs Thesis/2. PROCESSING/Working_Data/*.txt') 
df = pd.concat(pd.read_csv(f, sep = "\t", header = None) for f in data_path) 
df.columns = ['osm_id', 'link_dir', 'date_time', 'speed_kmph', 'unique_entries'] 
 
# Converting date_time format  
df['date_time'] = df['date_time'].astype('datetime64[ns]') 
 
# Drop missing values (Na = not available data) 
df = df.dropna(axis = 0) 
 
# Connecting postgreSQL to python  
# Engine configuration for postgreSQL,  
# see for more detail: https://docs.sqlalchemy.org/en/14/core/engines.html 
conn_string = 'postgresql+psycopg2://postgres:1234@localhost/thesis' 
 
# Perform to_sql to convert df to SQL 
db = create_engine(conn_string) 
conn = db.connect() 
 
print('Your data will be converted, Please wait...') 
# Change the name of the table every run! 
df.to_sql('network_speed_2021-22', con=conn, if_exists='replace', index=False) 
 
print(‘Your data is in the database!’) 

  



  -69- 

Appendix B 

Below is the SQL code to process and query the data input.  

CREATE EXTENSION postgis; 
 
-- Table: public.spatial_ref_sys 
 
-- DROP TABLE public.spatial_ref_sys; 
 
CREATE TABLE public.spatial_ref_sys 
( 
    srid integer NOT NULL, 
    auth_name character varying(256) COLLATE pg_catalog."default", 
    auth_srid integer, 
    srtext character varying(2048) COLLATE pg_catalog."default", 
    proj4text character varying(2048) COLLATE pg_catalog."default", 
    CONSTRAINT spatial_ref_sys_pkey PRIMARY KEY (srid), 
    CONSTRAINT spatial_ref_sys_srid_check CHECK (srid > 0 AND srid <= 998999) 
) 
 
TABLESPACE pg_default; 
 
ALTER TABLE public.spatial_ref_sys 
    OWNER to postgres; 
 
GRANT ALL ON TABLE public.spatial_ref_sys TO postgres; 
 
GRANT SELECT ON TABLE public.spatial_ref_sys TO PUBLIC; 
 
-- create a new column to store time, day, and stores 
-- for future processes, this should be done in a temporary way to save memory 
ALTER TABLE network_speed 
ADD column n_time VARCHAR, 
add column hours Varchar, 
add column mins Varchar, 
ADD column n_day VARCHAR, 
ADD column n_month VARCHAR, 
ADD column stores VARCHAR; 
 
-- fill the data with time extracted from the date_time column 
-- for future processes, this should be done in a temporary way to save memory 
UPDATE network_speed 
SET n_time = TO_CHAR(network_speed.date_time, 'HH24:MI'); 
 
Update network_speed 
set hours = to_char(network_speed.date_time, 'HH24'); 
 
Update network_speed 
set mins = to_char(network_speed.date_time, 'MI'); 
 
-- fill the data with the day extracted from the date_time column 
-- for future processes, this should be done in a temporary way to save memory 
UPDATE network_speed 
SET n_day = TO_CHAR(network_speed.date_time, 'DAY'); 
 
-- fill the data with the month extracted from the date_time column 
-- for future processes, this should be done in a temporary way to save memory 
UPDATE network_speed 
SET n_month = TO_CHAR(network_speed.date_time, 'MONTH'); 
 
-- fill the data with store extracted from conditional case  
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-- for future processes, this should be done in a temporary way to save memory 
UPDATE network_speed 
SET stores = CASE  
WHEN (TO_CHAR(network_speed.date_time, 'HH24:MI') BETWEEN '09:00' AND '20:59') AND 
(TO_CHAR(network_speed.date_time, 'DAY')  
IN ('TUESDAY  ','FRIDAY   ','THURSDAY ')) THEN 'OPEN' 
WHEN (TO_CHAR(network_speed.date_time, 'HH24:MI') BETWEEN '09:00' AND '17:59') AND 
(TO_CHAR(network_speed.date_time, 'DAY')  
IN ('MONDAY   ','WEDNESDAY','SATURDAY ')) THEN 'OPEN' 
WHEN (TO_CHAR(network_speed.date_time, 'HH24:MI') BETWEEN '07:30' AND '08:59') AND 
(TO_CHAR(network_speed.date_time, 'DAY')  
NOT IN ('SUNDAY   ')) THEN 'OPENING' 
WHEN (TO_CHAR(network_speed.date_time, 'HH24:MI') BETWEEN '21:00' AND '22:00') AND 
(TO_CHAR(network_speed.date_time, 'DAY')  
IN ('TUESDAY  ','FRIDAY   ','THURSDAY ')) THEN 'CLOSING' 
WHEN (TO_CHAR(network_speed.date_time, 'HH24:MI') BETWEEN '18:00' AND '19:00') AND 
(TO_CHAR(network_speed.date_time, 'DAY')  
IN ('MONDAY   ','WEDNESDAY','SATURDAY ')) THEN 'CLOSING' 
ELSE 'CLOSED' 
END; 
 
-- Add network_speed_2018 
-- Add network_speed_2019 
-- Add network_speed_2020 
-- Add network_speed_2021_22 
 
-- for pilot processing, some road segments will be selected by following  
-- the road segment that was previously selected 
-- in the future, need to find a way to automate this process (probably by using the 
segment coordinates) 
select network_speed_2018.osm_id, network_speed_2018.date_time, net-
work_speed_2018.link_dir, network_speed_2018.speed_kmph,  
network_speed_2018.n_time, network_speed_2018.hours, network_speed_2018.mins, net-
work_speed_2018.n_day, network_speed_2018.stores,  
network_speed_2018.n_month, thessaloniki_road_network.highway, thessaloni-
ki_road_network.road_lt_m, thessaloniki_road_network.bus_stop 
from network_speed_2018 
left join thessaloniki_road_network 
on network_speed_2018.osm_id = thessaloniki_road_network.osm_id  
where network_speed_2018.osm_id in ( 
    112282638, 113342134, 176665208, 176665230, 176665233,  
207312702, 357014247, 681636672, 681859683, 681859684,  
681859685, 681859686, 681859687, 724288053, 724288054,  
724298955, 724298956, 724298957, 724298958, 724298959,  
724298960 
) 
union  
select network_speed_2019.osm_id, network_speed_2019.date_time, net-
work_speed_2019.link_dir, network_speed_2019.speed_kmph,  
network_speed_2019.n_time, network_speed_2019.hours, network_speed_2019.mins, net-
work_speed_2019.n_day, network_speed_2019.stores,  
network_speed_2019.n_month, 
thessaloniki_road_network.highway, thessaloniki_road_network.road_lt_m, thessaloni-
ki_road_network.bus_stop 
from network_speed_2019 
left join thessaloniki_road_network 
on network_speed_2019.osm_id = thessaloniki_road_network.osm_id 
where network_speed_2019.osm_id in ( 
    112282638, 113342134, 176665208, 176665230, 176665233,  
207312702, 357014247, 681636672, 681859683, 681859684,  
681859685, 681859686, 681859687, 724288053, 724288054,  
724298955, 724298956, 724298957, 724298958, 724298959,  
724298960 
) 
union  
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select network_speed_2020.osm_id, network_speed_2020.date_time, net-
work_speed_2020.link_dir, network_speed_2020.speed_kmph,  
network_speed_2020.n_time, network_speed_2020.hours, network_speed_2020.mins, net-
work_speed_2020.n_day, network_speed_2020.stores,  
network_speed_2020.n_month, 
thessaloniki_road_network.highway, thessaloniki_road_network.road_lt_m, thessaloni-
ki_road_network.bus_stop 
from network_speed_2020 
left join thessaloniki_road_network 
on network_speed_2020.osm_id = thessaloniki_road_network.osm_id 
where network_speed_2020.osm_id in ( 
    112282638, 113342134, 176665208, 176665230, 176665233,  
207312702, 357014247, 681636672, 681859683, 681859684,  
681859685, 681859686, 681859687, 724288053, 724288054,  
724298955, 724298956, 724298957, 724298958, 724298959,  
724298960 
) 
union  
select network_speed_2021_22.osm_id, network_speed_2021_22.date_time, net-
work_speed_2021_22.link_dir, network_speed_2021_22.speed_kmph,  
network_speed_2021_22.n_time, network_speed_2021_22.hours, net-
work_speed_2021_22.mins, network_speed_2021_22.n_day, network_speed_2021_22.stores,  
network_speed_2021_22.n_month, 
thessaloniki_road_network.highway, thessaloniki_road_network.road_lt_m, thessaloni-
ki_road_network.bus_stop 
from network_speed_2021_22 
left join thessaloniki_road_network 
on network_speed_2021_22.osm_id = thessaloniki_road_network.osm_id 
where network_speed_2021_22.osm_id in ( 
    112282638, 113342134, 176665208, 176665230, 176665233,  
207312702, 357014247, 681636672, 681859683, 681859684,  
681859685, 681859686, 681859687, 724288053, 724288054,  
724298955, 724298956, 724298957, 724298958, 724298959,  
724298960 
) 
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Appendix C 

Below is the code used to predict the traffic speed for several scenarios for network-

wide prediction. 

import numpy as np 
import pandas as pd  
 
import matplotlib.pyplot as plt 
import seaborn as sns  
 
from sklearn.model_selection import train_test_split 
from sklearn.preprocessing import StandardScaler, MinMaxScaler 
from sklearn.preprocessing import LabelEncoder 
 
from sklearn.linear_model import LinearRegression 
from sklearn.neighbors import KNeighborsRegressor 
from sklearn.neural_network import MLPRegressor 
from sklearn.svm import LinearSVR, SVR 
from sklearn.tree import DecisionTreeRegressor 
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor 
 
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error 
 
import warnings 
warnings.filterwarnings(action='ignore') 
 
!python -V 
# print(sklearn.__version__) 

 

o_df = pd.read_csv('Tsimiski_st.csv', sep=',') # parse_dates = ['date_time'], in-
dex_col = ['date_time'] 
 
# Converting date_time format  
o_df['date_time'] = o_df['date_time'].astype('datetime64[ns]') 
o_df['year'] = o_df['date_time'].dt.year 
 
o_df.dropna(axis=0, how='any', inplace=True) 
 
sns.set(rc={'figure.figsize':(30,10)}, font_scale=2) 
sns.lineplot(x=o_df['date_time'], y=o_df['speed_kmph'], hue=o_df['osm_id']) 
plt.ylabel('Speed (Km/h)') 
plt.xlabel('Date & Time') 
plt.title('Speed Values in Tsimiski Street') 

 

# filter the data for processing  
df = o_df.loc[o_df['year'] == 2019]  
df = df.loc[df['osm_id'] == 176665188] # Change to df = df.loc[df['osm_id'] == 
176665188] for multiple year analysis 
 
#greater than the start date and smaller than the end date 
mask = (df['date_time'] > '2019-01-01 00:00:00') & (df['date_time'] <= '2019-05-31 
23:45:00') # selection format 2018-01-01 10:15:00 
df = df.loc[mask] 

 

# loop through id to create temp. df 
osm = df['osm_id'].unique() 
 
segments = {} 
for i in range(len(osm)): 
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    segments['segment{}'.format(i+1)]=df[df['osm_id']==osm[i]] 
 
ndf = pd.DataFrame() 
# resample for each id 
for segment in segments: 
    dfs = segments[segment] 
    dfs = dfs.set_index('date_time') 
    dfs = dfs.resample('15T').interpolate() 
    dfs = dfs.bfill() 
# convert the type for some of the column 
    dfs = dfs.astype({"osm_id":'int', "hours":'int', "mins":'int', "stores":'int', 
"n_day":'int', "n_month":'int', "year":'int'}) 
 
# append all temp. into one df 
    ndf = ndf.append(dfs) 
    df = ndf 

 

# Use only when multiple road segments are selected 
df = df.reset_index() 
df 

 

# Split df into X and y 
# selecting the prediction target (label) 
y = df.speed_kmph 
     
# convert all the features with label encoder 
df['highway_n'] = LabelEncoder().fit_transform(df['highway']) 
df['bus_stop_n'] = LabelEncoder().fit_transform(df['bus_stop']) 
# selecting the 'features', depending on the data 
data_features = ['hours', 'mins', 'n_day', 'stores'] 
X = df[data_features] 

 

for col in df.columns: 
    if len(df[col].unique()) == 1: 
        df.drop(col,inplace=True,axis=1) 
 
# Visualizing Correlation 
sns.set(rc={'figure.figsize':(12,10)}, font_scale=2) 
sns.heatmap(df.corr(), annot=True, vmin=-1.0, cmap='mako') 
plt.title('Data Correlation') 
plt.show() 

 

# Train-test split 
train_X, val_X, train_y, val_y = train_test_split(X, y, train_size=0.7, shuffle=True, 
random_state=1) 
 
# Set your custom color palette 
customPalette = sns.set_palette(sns.color_palette("hls", 8)) 
 
ax = sns.set(rc={'figure.figsize':(30,10)}, font_scale=2) 
ax = sns.lineplot(x=train_X['hours'], y=train_y, hue=train_X['osm_id']) # , la-
bel='Training Data', hue=train_X['osm_id'] 
ax = sns.lineplot(x=val_X['hours'], y=val_y, hue=val_X['osm_id']) # , label='Test 
Data', hue=val_X['osm_id'], palette=customPalette 
 
# Customize the axes and title 
ax.set_title("Selected Data") 
ax.set_xlabel("Hours") 
ax.set_ylabel("Speed in Km/h") 

 

# Scale X 
print('Variance before scaler:', train_X.var(), sep='\n') 
print('\n') 
scaler = StandardScaler() 



-74- 

scaler.fit(train_X) 
train_X = pd.DataFrame(scaler.transform(train_X), index=train_X.index, col-
umns=train_X.columns) 
val_X = pd.DataFrame(scaler.transform(val_X), index=val_X.index, col-
umns=val_X.columns) 

 

# Comparing the models  
models = { 
    "                     Linear Regression": LinearRegression(normalize=True), # 
normalize=True 
    "                   K-Nearest Neighbors": KNeighborsRegressor(n_neighbors=5, 
weights='uniform', algorithm='brute', p=1), # n_neighbors=5, weights='uniform', algo-
rithm='brute', p=1 
    "                        Neural Network": MLPRegressor(max_iter=500, ran-
dom_state=0, solver='lbfgs'), # max_iter=500, random_state=0, solver='lbfgs' 
    "Support Vector Machine (Linear Kernel)": LinearSVR(C=1, epsilon=5), # C=1, epsi-
lon=5 
    "   Support Vector Machine (RBF Kernel)": SVR(C=500, epsilon=5), # C=500, epsi-
lon=5 
    "                         Decision Tree": DecisionTreeRegressor(max_depth=6), # 
max_depth=6 
    "                         Random Forest": RandomForestRegressor(max_depth=6, 
max_features="log2", random_state=0), # max_depth=6, max_features="log2", ran-
dom_state=0 
    "                     Gradient Boosting": GradientBoostingRegres-
sor(n_estimators=100, learning_rate=0.1, max_depth=3) # n_estimators=100, learn-
ing_rate=0.1, max_depth=3 
} 
 
for name, model in models.items(): 
    model.fit(train_X, train_y) 
    print(name + " trained.") 

 

for name, model in models.items(): 
    print(name + " R^2 Score: {:.5f}".format(model.score(val_X, val_y))) 
    print(name + " R^2 Score: {:.5f}".format(model.score(train_X, train_y))) 

 

from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error 
 
for name, model in models.items(): 
    val_predict = model.predict(val_X) 
    print(name + " R^2 Score: {:.5f}".format(r2_score(val_y, val_predict))) 
    print(name + " RMSE: {:.5f}".format(np.sqrt(mean_squared_error(val_y, 
val_predict)))) 
    print(name + " MAE: {:.5f}".format(mean_absolute_error(val_y, val_predict))) 

 

# Specifying and creating the MODEL 
# Change the model accordingly! 
data_model = GradientBoostingRegressor() 
data_model.fit(train_X, train_y) 

 

# PREDICTING and VALIDATING the values 
val_predictions = data_model.predict(val_X) 
 
print('R^2 Score =', r2_score(val_y, val_predictions)) 
print('Mean Absolute Error =', mean_absolute_error(val_y, val_predictions)) 
print('Root Mean Squared Error =', np.sqrt(mean_squared_error(val_y, 
val_predictions))) 
 
# Implementing Cross Validation techniques 
from sklearn.model_selection import cross_val_score 
scores = cross_val_score(data_model, train_X, train_y, cv=10) 
scores 
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# Inverse transform the X data for plot 
 
print('Before Inverse Scaler:') 
print("Training Data", train_X) 
print("Test Data", val_X) 
 
train_X = pd.DataFrame(scaler.inverse_transform(train_X), index=train_X.index, col-
umns=train_X.columns) 
val_X = pd.DataFrame(scaler.inverse_transform(val_X), index=val_X.index, col-
umns=val_X.columns) 
 
print("After Inverse Scaler:") 
print("Training Data", train_X) 
print("Test Data", val_X) 

 

# Set your custom color palette 
customPalette = sns.set_palette(sns.color_palette("hls", 8)) 
 
ax = sns.set(rc={'figure.figsize':(30,10)}, font_scale=2) 
ax = sns.lineplot(x=val_X['hours'], y=val_y, label='Actual Value') # , 
hue=train_X['osm_id'] 
ax = sns.lineplot(x=val_X['hours'], y=val_predict, label='Predicted Value') # , 
hue=val_X['osm_id'], palette=customPalette 
 
# Customize the axes and title 
ax.set_title("Selected Data") 
ax.set_xlabel("Hours") 
ax.set_ylabel("Speed (Km/h)") 

 

# Set your custom color palette 
customPalette = sns.set_palette(sns.color_palette("hls", 8)) 
 
ax = sns.set(rc={'figure.figsize':(30,10)}, font_scale=2) 
ax = sns.lineplot(x=val_X.index, y=val_y, label='Actual Value') # , 
hue=train_X['osm_id'] 
ax = sns.lineplot(x=val_X.index, y=val_predict, label='Predicted Value') # , 
hue=val_X['osm_id'], palette=customPalette 
 
# Customize the axes and title 
ax.set_title("Selected Data") 
ax.set_xlabel("Hours") 
ax.set_ylabel("Speed (Km/h)") 

 

# Set your custom color palette 
customPalette = sns.set_palette(sns.color_palette("hls", 8)) 
 
ax = sns.set(rc={'figure.figsize':(30,10)}, font_scale=2) 
ax = sns.lineplot(x=val_X['hours'], y=val_y, hue=val_X['osm_id'], 
style=val_X['osm_id']) # , label='Actual Value', hue=train_X['osm_id'] 
ax = sns.lineplot(x=val_X['hours'], y=val_predict, hue=val_X['osm_id'], 
style=val_X['osm_id']) # , label='Predicted Value', hue=val_X['osm_id'], pal-
ette=customPalette 
 
# Customize the axes and title 
ax.set_title("Selected Data") 
ax.set_xlabel("Hours") 
ax.set_ylabel("Speed (Km/h)") 
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Appendix D 

Below is the code for assessing the models for comparison with the preceding study.  

from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error 
 
df = df.reset_index() 
train_mask = (df['date_time'] > '2019-01-01 00:00:00') & (df['date_time'] <= '2019-
02-14 23:45:00') # selection format 2018-01-01 10:15:00 
wdf = df.loc[train_mask] 
 
y = wdf.speed_kmph 
data_features = ['hours', 'mins', 'n_day', 'stores'] 
X = wdf[data_features] 
 
# Train-test split 
train_X, val_X, train_y, val_y = train_test_split(X, y, train_size=0.7, shuffle=True, 
random_state=1) 
 
scaler = StandardScaler() 
scaler.fit(train_X) 
train_X = pd.DataFrame(scaler.transform(train_X), index=train_X.index, col-
umns=train_X.columns) 
val_X = pd.DataFrame(scaler.transform(val_X), index=val_X.index, col-
umns=val_X.columns) 
 
# Comparing the models  
models = { 
    "LR": LinearRegression(normalize=True), # normalize=True 
    "KNN": KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm='brute', 
p=1), # n_neighbors=5, weights='uniform', algorithm='brute', p=1 
    "NN": MLPRegressor(max_iter=500, random_state=0, solver='lbfgs'), # max_iter=500, 
random_state=0, solver='lbfgs' 
    "SVR-L": LinearSVR(C=1, epsilon=5), # C=1, epsilon=5 
    "SVR-RBF": SVR(C=500, epsilon=5), # C=500, epsilon=5 
    "DT": DecisionTreeRegressor(max_depth=6), # max_depth=6 
    "RF": RandomForestRegressor(max_depth=6, max_features="log2", random_state=0), # 
max_depth=6, max_features="log2", random_state=0 
    "GB": GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=3) 
# n_estimators=100, learning_rate=0.1, max_depth=3 
} 
 
for name, model in models.items(): 
    model.fit(train_X, train_y) 
    print(name + " trained.") 
    print(name + " R^2 Score: {:.5f}".format(model.score(val_X, val_y))) 
    print(name + " R^2 Score: {:.5f}".format(model.score(train_X, train_y))) 

 

# Scenario 1 test data (One Random Time on Random Days, Random Road) 
test_mask = (df['date_time'] > '2019-02-15 00:00:00') & (df['date_time'] <= '2019-02-
28 23:45:00') # selection format 2018-01-01 10:15:00 
wdf = df.loc[test_mask] 
wdf = wdf.set_index('date_time') 
 
result = pd.DataFrame() 
 
result['Model'] = '' 
result['MAE'] = '' 
result['RMSE'] = '' 
 
result = result.astype({"MAE":'int', "RMSE":'int'}) 
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for i in range(35): 
    ldf = wdf.sample() 
 
    val_y = ldf.speed_kmph 
 
    data_features = ['hours', 'mins', 'n_day', 'stores'] 
    val_X = ldf[data_features] 
 
    val_X = pd.DataFrame(scaler.transform(val_X), index=val_X.index, col-
umns=val_X.columns) 
 
    for name, model in models.items(): 
        val_predict = model.predict(val_X) 
         
        result = result.append({'Model': name, 'MAE' : mean_absolute_error(val_y, 
val_predict), 'RMSE': np.sqrt(mean_squared_error(val_y, val_predict))}, ig-
nore_index=True) 

 

result.groupby('Model')['MAE'].describe().applymap(lambda x: f"{x:0.2f}") 
result.groupby('Model')['RMSE'].describe().applymap(lambda x: f"{x:0.2f}") 
sns.set(rc={'figure.figsize':(10,10)}, font_scale=1) 
sns.boxplot(y=result['RMSE'], x=result['Model'], width=0.3) 
plt.show() 

 

# Scenario 2 test data (Eight Consecutive Times on Random Days, Random Road ) 
test_mask1 = (df['date_time'] > '2019-02-16 11:00:00') & (df['date_time'] <= '2019-
02-16 13:00:00') # selection format 2018-01-01 10:15:00 
wdf = df.loc[test_mask1] 
wdf = wdf.set_index('date_time') 
 
val_y = wdf.speed_kmph 
 
data_features = ['hours', 'mins', 'n_day', 'stores'] 
val_X = wdf[data_features] 
 
val_X = pd.DataFrame(scaler.transform(val_X), index=val_X.index, col-
umns=val_X.columns) 
 
print("Test 1") 
 
result = pd.DataFrame() 
 
result['Model'] = '' 
result['MAE'] = '' 
result['RMSE'] = '' 
result['R2'] = '' 
 
result = result.astype({"MAE":'int', "RMSE":'int', "R2":'int'}) 
 
for name, model in models.items(): 
    val_predict = model.predict(val_X) 
         
    result = result.append({'Model': name, 'MAE' : mean_absolute_error(val_y, 
val_predict), 'RMSE': np.sqrt(mean_squared_error(val_y, val_predict)), 
'R2':r2_score(val_y, val_predict)}, ignore_index=True) 
 
    # Set your custom color palette 
    customPalette = sns.set_palette(sns.color_palette("hls", 8)) 
 
    ax = sns.set(rc={'figure.figsize':(30,10)}, font_scale=2) 
    ax = sns.lineplot(x=val_X.index, y=val_predict, label=name) # , 
hue=val_X['osm_id'], palette=customPalette 
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ax = sns.lineplot(x=val_X.index, y=val_y, label='Actual Value', dashes=True) # , 
hue=train_X['osm_id'] 
 
# Customize the axes and title 
ax.set_title("Prediction Result Comparison") 
ax.set_xlabel("Hours") 
ax.set_ylabel("Speed (Km/h)") 
plt.legend(loc='lower right') 

 

result.groupby('Model')['MAE'].describe().applymap(lambda x: f"{x:0.2f}") 
result.groupby('Model')['RMSE'].describe().applymap(lambda x: f"{x:0.2f}") 
result.groupby('Model')['R2'].describe().applymap(lambda x: f"{x:0.2f}") 

 

# Scenario 3 test data (Random Days, Random Roads) 
test_mask1 = (df['date_time'] > '2019-02-24 00:00:00') & (df['date_time'] <= '2019-
02-24 23:45:00') # selection format 2018-01-01 10:15:00 
wdf = df.loc[test_mask1] 
wdf = wdf.set_index('date_time') 
 
val_y = wdf.speed_kmph 
 
data_features = ['hours', 'mins', 'n_day', 'stores'] 
val_X = wdf[data_features] 
 
val_X = pd.DataFrame(scaler.transform(val_X), index=val_X.index, col-
umns=val_X.columns) 
 
print("Test 1") 
 
result = pd.DataFrame() 
 
result['Model'] = '' 
result['MAE'] = '' 
result['RMSE'] = '' 
result['R2'] = '' 
 
result = result.astype({"MAE":'int', "RMSE":'int', "R2":'int'}) 
 
for name, model in models.items(): 
    val_predict = model.predict(val_X) 
         
    result = result.append({'Model': name, 'MAE' : mean_absolute_error(val_y, 
val_predict), 'RMSE': np.sqrt(mean_squared_error(val_y, val_predict)), 
'R2':r2_score(val_y, val_predict)}, ignore_index=True) 
 
    # Set your custom color palette 
    # plt.figure() 
    ax = sns.set(rc={'figure.figsize':(30,10)}, font_scale=2) 
    ax = sns.lineplot(x=val_X.index, y=val_predict, label=name+' Predicted Value') # 
, hue=val_X['osm_id'], palette=customPalette 
 
ax = sns.lineplot(x=val_X.index, y=val_y, label=' Actual Value') # , 
hue=train_X['osm_id'] 
     
# Customize the axes and title 
ax.set_title("Prediction Result Comparison") 
ax.set_xlabel("Hours") 
ax.set_ylabel("Speed (Km/h)") 
plt.legend(loc='upper right') 

 

result.groupby('Model')['MAE'].describe().applymap(lambda x: f"{x:0.2f}") 
result.groupby('Model')['RMSE'].describe().applymap(lambda x: f"{x:0.2f}") 
result.groupby('Model')['R2'].describe().applymap(lambda x: f"{x:0.2f}") 

 


